llama-stack/llama_stack/providers/utils/inference/prompt_adapter.py
Ashwin Bharambe 6bb57e72a7
Remove "routing_table" and "routing_key" concepts for the user (#201)
This PR makes several core changes to the developer experience surrounding Llama Stack.

Background: PR #92 introduced the notion of "routing" to the Llama Stack. It introduces three object types: (1) models, (2) shields and (3) memory banks. Each of these objects can be associated with a distinct provider. So you can get model A to be inferenced locally while model B, C can be inference remotely (e.g.)

However, this had a few drawbacks:

you could not address the provider instances -- i.e., if you configured "meta-reference" with a given model, you could not assign an identifier to this instance which you could re-use later.
the above meant that you could not register a "routing_key" (e.g. model) dynamically and say "please use this existing provider I have already configured" for a new model.
the terms "routing_table" and "routing_key" were exposed directly to the user. in my view, this is way too much overhead for a new user (which almost everyone is.) people come to the stack wanting to do ML and encounter a completely unexpected term.
What this PR does: This PR structures the run config with only a single prominent key:

- providers
Providers are instances of configured provider types. Here's an example which shows two instances of the remote::tgi provider which are serving two different models.

providers:
  inference:
  - provider_id: foo
    provider_type: remote::tgi
    config: { ... }
  - provider_id: bar
    provider_type: remote::tgi
    config: { ... }
Secondly, the PR adds dynamic registration of { models | shields | memory_banks } to the API surface. The distribution still acts like a "routing table" (as previously) except that it asks the backing providers for a listing of these objects. For example it asks a TGI or Ollama inference adapter what models it is serving. Only the models that are being actually served can be requested by the user for inference. Otherwise, the Stack server will throw an error.

When dynamically registering these objects, you can use the provider IDs shown above. Info about providers can be obtained using the Api.inspect set of endpoints (/providers, /routes, etc.)

The above examples shows the correspondence between inference providers and models registry items. Things work similarly for the safety <=> shields and memory <=> memory_banks pairs.

Registry: This PR also makes it so that Providers need to implement additional methods for registering and listing objects. For example, each Inference provider is now expected to implement the ModelsProtocolPrivate protocol (naming is not great!) which consists of two methods

register_model
list_models
The goal is to inform the provider that a certain model needs to be supported so the provider can make any relevant backend changes if needed (or throw an error if the model cannot be supported.)

There are many other cleanups included some of which are detailed in a follow-up comment.
2024-10-10 10:24:13 -07:00

197 lines
6.5 KiB
Python

# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from typing import Tuple
from llama_models.llama3.api.chat_format import ChatFormat
from termcolor import cprint
from llama_models.llama3.api.datatypes import * # noqa: F403
from llama_stack.apis.inference import * # noqa: F403
from llama_models.datatypes import ModelFamily
from llama_models.llama3.prompt_templates import (
BuiltinToolGenerator,
FunctionTagCustomToolGenerator,
JsonCustomToolGenerator,
PythonListCustomToolGenerator,
SystemDefaultGenerator,
)
from llama_models.sku_list import resolve_model
from llama_stack.providers.utils.inference import supported_inference_models
def chat_completion_request_to_prompt(
request: ChatCompletionRequest, formatter: ChatFormat
) -> str:
messages = chat_completion_request_to_messages(request)
model_input = formatter.encode_dialog_prompt(messages)
return formatter.tokenizer.decode(model_input.tokens)
def chat_completion_request_to_model_input_info(
request: ChatCompletionRequest, formatter: ChatFormat
) -> Tuple[str, int]:
messages = chat_completion_request_to_messages(request)
model_input = formatter.encode_dialog_prompt(messages)
return (
formatter.tokenizer.decode(model_input.tokens),
len(model_input.tokens),
)
def chat_completion_request_to_messages(
request: ChatCompletionRequest,
) -> List[Message]:
"""Reads chat completion request and augments the messages to handle tools.
For eg. for llama_3_1, add system message with the appropriate tools or
add user messsage for custom tools, etc.
"""
model = resolve_model(request.model)
if model is None:
cprint(f"Could not resolve model {request.model}", color="red")
return request.messages
if model.descriptor() not in supported_inference_models():
cprint(f"Unsupported inference model? {model.descriptor()}", color="red")
return request.messages
if model.model_family == ModelFamily.llama3_1 or (
model.model_family == ModelFamily.llama3_2
and is_multimodal(model.core_model_id)
):
# llama3.1 and llama3.2 multimodal models follow the same tool prompt format
return augment_messages_for_tools_llama_3_1(request)
elif model.model_family == ModelFamily.llama3_2:
return augment_messages_for_tools_llama_3_2(request)
else:
return request.messages
def augment_messages_for_tools_llama_3_1(
request: ChatCompletionRequest,
) -> List[Message]:
assert request.tool_choice == ToolChoice.auto, "Only `ToolChoice.auto` supported"
existing_messages = request.messages
existing_system_message = None
if existing_messages[0].role == Role.system.value:
existing_system_message = existing_messages.pop(0)
assert (
existing_messages[0].role != Role.system.value
), "Should only have 1 system message"
messages = []
default_gen = SystemDefaultGenerator()
default_template = default_gen.gen()
sys_content = ""
tool_template = None
if request.tools:
tool_gen = BuiltinToolGenerator()
tool_template = tool_gen.gen(request.tools)
sys_content += tool_template.render()
sys_content += "\n"
sys_content += default_template.render()
if existing_system_message:
# TODO: this fn is needed in many places
def _process(c):
if isinstance(c, str):
return c
else:
return "<media>"
sys_content += "\n"
if isinstance(existing_system_message.content, str):
sys_content += _process(existing_system_message.content)
elif isinstance(existing_system_message.content, list):
sys_content += "\n".join(
[_process(c) for c in existing_system_message.content]
)
messages.append(SystemMessage(content=sys_content))
has_custom_tools = any(isinstance(dfn.tool_name, str) for dfn in request.tools)
if has_custom_tools:
if request.tool_prompt_format == ToolPromptFormat.json:
tool_gen = JsonCustomToolGenerator()
elif request.tool_prompt_format == ToolPromptFormat.function_tag:
tool_gen = FunctionTagCustomToolGenerator()
else:
raise ValueError(
f"Non supported ToolPromptFormat {request.tool_prompt_format}"
)
custom_tools = [t for t in request.tools if isinstance(t.tool_name, str)]
custom_template = tool_gen.gen(custom_tools)
messages.append(UserMessage(content=custom_template.render()))
# Add back existing messages from the request
messages += existing_messages
return messages
def augment_messages_for_tools_llama_3_2(
request: ChatCompletionRequest,
) -> List[Message]:
assert request.tool_choice == ToolChoice.auto, "Only `ToolChoice.auto` supported"
existing_messages = request.messages
existing_system_message = None
if existing_messages[0].role == Role.system.value:
existing_system_message = existing_messages.pop(0)
assert (
existing_messages[0].role != Role.system.value
), "Should only have 1 system message"
messages = []
sys_content = ""
custom_tools, builtin_tools = [], []
for t in request.tools:
if isinstance(t.tool_name, str):
custom_tools.append(t)
else:
builtin_tools.append(t)
tool_template = None
if builtin_tools:
tool_gen = BuiltinToolGenerator()
tool_template = tool_gen.gen(builtin_tools)
sys_content += tool_template.render()
sys_content += "\n"
custom_tools = [dfn for dfn in request.tools if isinstance(dfn.tool_name, str)]
if custom_tools:
if request.tool_prompt_format != ToolPromptFormat.python_list:
raise ValueError(
f"Non supported ToolPromptFormat {request.tool_prompt_format}"
)
tool_gen = PythonListCustomToolGenerator()
tool_template = tool_gen.gen(custom_tools)
sys_content += tool_template.render()
sys_content += "\n"
if existing_system_message:
sys_content += interleaved_text_media_as_str(
existing_system_message.content, sep="\n"
)
messages.append(SystemMessage(content=sys_content))
# Add back existing messages from the request
messages += existing_messages
return messages