forked from phoenix-oss/llama-stack-mirror
We need to support: - asymmetric embedding models (#934) - truncation policies (#933) - varying dimensional output (#932) ## Test Plan ```bash $ cd llama_stack/providers/tests/inference $ pytest -s -v -k fireworks test_embeddings.py \ --inference-model nomic-ai/nomic-embed-text-v1.5 --env EMBEDDING_DIMENSION=784 $ pytest -s -v -k together test_embeddings.py \ --inference-model togethercomputer/m2-bert-80M-8k-retrieval --env EMBEDDING_DIMENSION=784 $ pytest -s -v -k ollama test_embeddings.py \ --inference-model all-minilm:latest --env EMBEDDING_DIMENSION=784 ```
128 lines
4.7 KiB
Python
128 lines
4.7 KiB
Python
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
|
# All rights reserved.
|
|
#
|
|
# This source code is licensed under the terms described in the LICENSE file in
|
|
# the root directory of this source tree.
|
|
from typing import AsyncGenerator
|
|
|
|
from openai import OpenAI
|
|
|
|
from llama_stack.apis.inference import * # noqa: F403
|
|
from llama_stack.models.llama.datatypes import Message
|
|
|
|
# from llama_stack.providers.datatypes import ModelsProtocolPrivate
|
|
from llama_stack.providers.utils.inference.model_registry import ModelRegistryHelper
|
|
from llama_stack.providers.utils.inference.openai_compat import (
|
|
get_sampling_options,
|
|
process_chat_completion_response,
|
|
process_chat_completion_stream_response,
|
|
)
|
|
from llama_stack.providers.utils.inference.prompt_adapter import (
|
|
chat_completion_request_to_prompt,
|
|
)
|
|
|
|
from .config import RunpodImplConfig
|
|
|
|
RUNPOD_SUPPORTED_MODELS = {
|
|
"Llama3.1-8B": "meta-llama/Llama-3.1-8B",
|
|
"Llama3.1-70B": "meta-llama/Llama-3.1-70B",
|
|
"Llama3.1-405B:bf16-mp8": "meta-llama/Llama-3.1-405B",
|
|
"Llama3.1-405B": "meta-llama/Llama-3.1-405B-FP8",
|
|
"Llama3.1-405B:bf16-mp16": "meta-llama/Llama-3.1-405B",
|
|
"Llama3.1-8B-Instruct": "meta-llama/Llama-3.1-8B-Instruct",
|
|
"Llama3.1-70B-Instruct": "meta-llama/Llama-3.1-70B-Instruct",
|
|
"Llama3.1-405B-Instruct:bf16-mp8": "meta-llama/Llama-3.1-405B-Instruct",
|
|
"Llama3.1-405B-Instruct": "meta-llama/Llama-3.1-405B-Instruct-FP8",
|
|
"Llama3.1-405B-Instruct:bf16-mp16": "meta-llama/Llama-3.1-405B-Instruct",
|
|
"Llama3.2-1B": "meta-llama/Llama-3.2-1B",
|
|
"Llama3.2-3B": "meta-llama/Llama-3.2-3B",
|
|
}
|
|
|
|
|
|
class RunpodInferenceAdapter(ModelRegistryHelper, Inference):
|
|
def __init__(self, config: RunpodImplConfig) -> None:
|
|
ModelRegistryHelper.__init__(self, stack_to_provider_models_map=RUNPOD_SUPPORTED_MODELS)
|
|
self.config = config
|
|
|
|
async def initialize(self) -> None:
|
|
return
|
|
|
|
async def shutdown(self) -> None:
|
|
pass
|
|
|
|
async def completion(
|
|
self,
|
|
model: str,
|
|
content: InterleavedContent,
|
|
sampling_params: Optional[SamplingParams] = SamplingParams(),
|
|
response_format: Optional[ResponseFormat] = None,
|
|
stream: Optional[bool] = False,
|
|
logprobs: Optional[LogProbConfig] = None,
|
|
) -> AsyncGenerator:
|
|
raise NotImplementedError()
|
|
|
|
async def chat_completion(
|
|
self,
|
|
model: str,
|
|
messages: List[Message],
|
|
sampling_params: Optional[SamplingParams] = SamplingParams(),
|
|
response_format: Optional[ResponseFormat] = None,
|
|
tools: Optional[List[ToolDefinition]] = None,
|
|
tool_choice: Optional[ToolChoice] = ToolChoice.auto,
|
|
tool_prompt_format: Optional[ToolPromptFormat] = None,
|
|
stream: Optional[bool] = False,
|
|
logprobs: Optional[LogProbConfig] = None,
|
|
tool_config: Optional[ToolConfig] = None,
|
|
) -> AsyncGenerator:
|
|
request = ChatCompletionRequest(
|
|
model=model,
|
|
messages=messages,
|
|
sampling_params=sampling_params,
|
|
tools=tools or [],
|
|
stream=stream,
|
|
logprobs=logprobs,
|
|
tool_config=tool_config,
|
|
)
|
|
|
|
client = OpenAI(base_url=self.config.url, api_key=self.config.api_token)
|
|
if stream:
|
|
return self._stream_chat_completion(request, client)
|
|
else:
|
|
return await self._nonstream_chat_completion(request, client)
|
|
|
|
async def _nonstream_chat_completion(
|
|
self, request: ChatCompletionRequest, client: OpenAI
|
|
) -> ChatCompletionResponse:
|
|
params = self._get_params(request)
|
|
r = client.completions.create(**params)
|
|
return process_chat_completion_response(r, request)
|
|
|
|
async def _stream_chat_completion(self, request: ChatCompletionRequest, client: OpenAI) -> AsyncGenerator:
|
|
params = self._get_params(request)
|
|
|
|
async def _to_async_generator():
|
|
s = client.completions.create(**params)
|
|
for chunk in s:
|
|
yield chunk
|
|
|
|
stream = _to_async_generator()
|
|
async for chunk in process_chat_completion_stream_response(stream, request):
|
|
yield chunk
|
|
|
|
def _get_params(self, request: ChatCompletionRequest) -> dict:
|
|
return {
|
|
"model": self.map_to_provider_model(request.model),
|
|
"prompt": chat_completion_request_to_prompt(request),
|
|
"stream": request.stream,
|
|
**get_sampling_options(request.sampling_params),
|
|
}
|
|
|
|
async def embeddings(
|
|
self,
|
|
model: str,
|
|
contents: List[str] | List[InterleavedContentItem],
|
|
text_truncation: Optional[TextTruncation] = TextTruncation.none,
|
|
output_dimension: Optional[int] = None,
|
|
task_type: Optional[EmbeddingTaskType] = None,
|
|
) -> EmbeddingsResponse:
|
|
raise NotImplementedError()
|