forked from phoenix-oss/llama-stack-mirror
* skeleton dataset / datasetio * dataset datasetio * config * address comments * delete dataset_utils * address comments * naming fix
109 lines
3.5 KiB
Python
109 lines
3.5 KiB
Python
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
|
# All rights reserved.
|
|
#
|
|
# This source code is licensed under the terms described in the LICENSE file in
|
|
# the root directory of this source tree.
|
|
import os
|
|
|
|
import pytest
|
|
import pytest_asyncio
|
|
|
|
from llama_stack.apis.datasetio import * # noqa: F403
|
|
from llama_stack.distribution.datatypes import * # noqa: F403
|
|
from llama_stack.providers.tests.resolver import resolve_impls_for_test
|
|
|
|
# How to run this test:
|
|
#
|
|
# 1. Ensure you have a conda with the right dependencies installed. This is a bit tricky
|
|
# since it depends on the provider you are testing. On top of that you need
|
|
# `pytest` and `pytest-asyncio` installed.
|
|
#
|
|
# 2. Copy and modify the provider_config_example.yaml depending on the provider you are testing.
|
|
#
|
|
# 3. Run:
|
|
#
|
|
# ```bash
|
|
# PROVIDER_ID=<your_provider> \
|
|
# PROVIDER_CONFIG=provider_config.yaml \
|
|
# pytest -s llama_stack/providers/tests/datasetio/test_datasetio.py \
|
|
# --tb=short --disable-warnings
|
|
# ```
|
|
|
|
|
|
@pytest_asyncio.fixture(scope="session")
|
|
async def datasetio_settings():
|
|
impls = await resolve_impls_for_test(
|
|
Api.datasetio,
|
|
)
|
|
return {
|
|
"datasetio_impl": impls[Api.datasetio],
|
|
"datasets_impl": impls[Api.datasets],
|
|
}
|
|
|
|
|
|
async def register_dataset(datasets_impl: Datasets):
|
|
dataset = DatasetDefWithProvider(
|
|
identifier="test_dataset",
|
|
provider_id=os.environ["PROVIDER_ID"],
|
|
url=URL(
|
|
uri="https://openaipublic.blob.core.windows.net/simple-evals/mmlu.csv",
|
|
),
|
|
columns_schema={},
|
|
)
|
|
await datasets_impl.register_dataset(dataset)
|
|
|
|
|
|
@pytest.mark.asyncio
|
|
async def test_datasets_list(datasetio_settings):
|
|
# NOTE: this needs you to ensure that you are starting from a clean state
|
|
# but so far we don't have an unregister API unfortunately, so be careful
|
|
datasets_impl = datasetio_settings["datasets_impl"]
|
|
response = await datasets_impl.list_datasets()
|
|
assert isinstance(response, list)
|
|
assert len(response) == 0
|
|
|
|
|
|
@pytest.mark.asyncio
|
|
async def test_datasets_register(datasetio_settings):
|
|
# NOTE: this needs you to ensure that you are starting from a clean state
|
|
# but so far we don't have an unregister API unfortunately, so be careful
|
|
datasets_impl = datasetio_settings["datasets_impl"]
|
|
await register_dataset(datasets_impl)
|
|
|
|
response = await datasets_impl.list_datasets()
|
|
assert isinstance(response, list)
|
|
assert len(response) == 1
|
|
|
|
# register same dataset with same id again will fail
|
|
await register_dataset(datasets_impl)
|
|
response = await datasets_impl.list_datasets()
|
|
assert isinstance(response, list)
|
|
assert len(response) == 1
|
|
assert response[0].identifier == "test_dataset"
|
|
|
|
|
|
@pytest.mark.asyncio
|
|
async def test_get_rows_paginated(datasetio_settings):
|
|
datasetio_impl = datasetio_settings["datasetio_impl"]
|
|
datasets_impl = datasetio_settings["datasets_impl"]
|
|
await register_dataset(datasets_impl)
|
|
|
|
response = await datasetio_impl.get_rows_paginated(
|
|
dataset_id="test_dataset",
|
|
rows_in_page=3,
|
|
)
|
|
|
|
assert isinstance(response.rows, list)
|
|
assert len(response.rows) == 3
|
|
assert response.next_page_token == "3"
|
|
|
|
# iterate over all rows
|
|
response = await datasetio_impl.get_rows_paginated(
|
|
dataset_id="test_dataset",
|
|
rows_in_page=10,
|
|
page_token=response.next_page_token,
|
|
)
|
|
|
|
assert isinstance(response.rows, list)
|
|
assert len(response.rows) == 10
|
|
assert response.next_page_token == "13"
|