llama-stack/llama_stack/providers/remote/inference/databricks/databricks.py
Dinesh Yeduguru 8af6951106
remove conflicting default for tool prompt format in chat completion (#742)
# What does this PR do?
We are setting a default value of json for tool prompt format, which
conflicts with llama 3.2/3.3 models since they use python list. This PR
changes the defaults to None and in the code, we infer default based on
the model.

Addresses: #695 

Tests:
❯ LLAMA_STACK_BASE_URL=http://localhost:5000 pytest -v
tests/client-sdk/inference/test_inference.py -k
"test_text_chat_completion"

 pytest llama_stack/providers/tests/inference/test_prompt_adapter.py
2025-01-10 10:41:53 -08:00

148 lines
4.6 KiB
Python

# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from typing import AsyncGenerator, List, Optional
from llama_models.datatypes import CoreModelId
from llama_models.llama3.api.chat_format import ChatFormat
from llama_models.llama3.api.tokenizer import Tokenizer
from openai import OpenAI
from llama_stack.apis.common.content_types import InterleavedContent
from llama_stack.apis.inference import (
ChatCompletionRequest,
ChatCompletionResponse,
EmbeddingsResponse,
Inference,
LogProbConfig,
Message,
ResponseFormat,
SamplingParams,
ToolChoice,
ToolDefinition,
ToolPromptFormat,
)
from llama_stack.providers.utils.inference.model_registry import (
build_model_alias,
ModelRegistryHelper,
)
from llama_stack.providers.utils.inference.openai_compat import (
get_sampling_options,
process_chat_completion_response,
process_chat_completion_stream_response,
)
from llama_stack.providers.utils.inference.prompt_adapter import (
chat_completion_request_to_prompt,
)
from .config import DatabricksImplConfig
model_aliases = [
build_model_alias(
"databricks-meta-llama-3-1-70b-instruct",
CoreModelId.llama3_1_70b_instruct.value,
),
build_model_alias(
"databricks-meta-llama-3-1-405b-instruct",
CoreModelId.llama3_1_405b_instruct.value,
),
]
class DatabricksInferenceAdapter(ModelRegistryHelper, Inference):
def __init__(self, config: DatabricksImplConfig) -> None:
ModelRegistryHelper.__init__(
self,
model_aliases=model_aliases,
)
self.config = config
self.formatter = ChatFormat(Tokenizer.get_instance())
async def initialize(self) -> None:
return
async def shutdown(self) -> None:
pass
async def completion(
self,
model: str,
content: InterleavedContent,
sampling_params: Optional[SamplingParams] = SamplingParams(),
response_format: Optional[ResponseFormat] = None,
stream: Optional[bool] = False,
logprobs: Optional[LogProbConfig] = None,
) -> AsyncGenerator:
raise NotImplementedError()
async def chat_completion(
self,
model: str,
messages: List[Message],
sampling_params: Optional[SamplingParams] = SamplingParams(),
response_format: Optional[ResponseFormat] = None,
tools: Optional[List[ToolDefinition]] = None,
tool_choice: Optional[ToolChoice] = ToolChoice.auto,
tool_prompt_format: Optional[ToolPromptFormat] = None,
stream: Optional[bool] = False,
logprobs: Optional[LogProbConfig] = None,
) -> AsyncGenerator:
request = ChatCompletionRequest(
model=model,
messages=messages,
sampling_params=sampling_params,
tools=tools or [],
tool_choice=tool_choice,
tool_prompt_format=tool_prompt_format,
stream=stream,
logprobs=logprobs,
)
client = OpenAI(base_url=self.config.url, api_key=self.config.api_token)
if stream:
return self._stream_chat_completion(request, client)
else:
return await self._nonstream_chat_completion(request, client)
async def _nonstream_chat_completion(
self, request: ChatCompletionRequest, client: OpenAI
) -> ChatCompletionResponse:
params = self._get_params(request)
r = client.completions.create(**params)
return process_chat_completion_response(r, self.formatter)
async def _stream_chat_completion(
self, request: ChatCompletionRequest, client: OpenAI
) -> AsyncGenerator:
params = self._get_params(request)
async def _to_async_generator():
s = client.completions.create(**params)
for chunk in s:
yield chunk
stream = _to_async_generator()
async for chunk in process_chat_completion_stream_response(
stream, self.formatter
):
yield chunk
def _get_params(self, request: ChatCompletionRequest) -> dict:
return {
"model": request.model,
"prompt": chat_completion_request_to_prompt(
request, self.get_llama_model(request.model), self.formatter
),
"stream": request.stream,
**get_sampling_options(request.sampling_params),
}
async def embeddings(
self,
model: str,
contents: List[InterleavedContent],
) -> EmbeddingsResponse:
raise NotImplementedError()