forked from phoenix-oss/llama-stack-mirror
* API Keys passed from Client instead of distro configuration * delete distribution registry * Rename the "package" word away * Introduce a "Router" layer for providers Some providers need to be factorized and considered as thin routing layers on top of other providers. Consider two examples: - The inference API should be a routing layer over inference providers, routed using the "model" key - The memory banks API is another instance where various memory bank types will be provided by independent providers (e.g., a vector store is served by Chroma while a keyvalue memory can be served by Redis or PGVector) This commit introduces a generalized routing layer for this purpose. * update `apis_to_serve` * llama_toolchain -> llama_stack * Codemod from llama_toolchain -> llama_stack - added providers/registry - cleaned up api/ subdirectories and moved impls away - restructured api/api.py - from llama_stack.apis.<api> import foo should work now - update imports to do llama_stack.apis.<api> - update many other imports - added __init__, fixed some registry imports - updated registry imports - create_agentic_system -> create_agent - AgenticSystem -> Agent * Moved some stuff out of common/; re-generated OpenAPI spec * llama-toolchain -> llama-stack (hyphens) * add control plane API * add redis adapter + sqlite provider * move core -> distribution * Some more toolchain -> stack changes * small naming shenanigans * Removing custom tool and agent utilities and moving them client side * Move control plane to distribution server for now * Remove control plane from API list * no codeshield dependency randomly plzzzzz * Add "fire" as a dependency * add back event loggers * stack configure fixes * use brave instead of bing in the example client * add init file so it gets packaged * add init files so it gets packaged * Update MANIFEST * bug fix --------- Co-authored-by: Hardik Shah <hjshah@fb.com> Co-authored-by: Xi Yan <xiyan@meta.com> Co-authored-by: Ashwin Bharambe <ashwin@meta.com>
105 lines
3.7 KiB
Python
105 lines
3.7 KiB
Python
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
|
# All rights reserved.
|
|
#
|
|
# This source code is licensed under the terms described in the LICENSE file in
|
|
# the root directory of this source tree.
|
|
|
|
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
|
# This software may be used and distributed in accordance with the terms of the Llama 3 Community License Agreement.
|
|
|
|
import os
|
|
from typing import Optional
|
|
|
|
import torch
|
|
|
|
from fairscale.nn.model_parallel.mappings import reduce_from_model_parallel_region
|
|
from llama_models.llama3.api.model import Transformer, TransformerBlock
|
|
from llama_stack.apis.inference import QuantizationType
|
|
|
|
from llama_stack.apis.inference.config import (
|
|
CheckpointQuantizationFormat,
|
|
MetaReferenceImplConfig,
|
|
)
|
|
|
|
from termcolor import cprint
|
|
from torch import Tensor
|
|
|
|
|
|
def is_fbgemm_available() -> bool:
|
|
try:
|
|
import fbgemm_gpu.experimental.gen_ai # noqa: F401
|
|
|
|
return True
|
|
except ImportError:
|
|
return False
|
|
|
|
|
|
def swiglu_wrapper(
|
|
self,
|
|
x: Tensor,
|
|
):
|
|
from .fp8_impls import ffn_swiglu
|
|
|
|
out = ffn_swiglu(x, self.w1.weight, self.w3.weight, self.w2.weight)
|
|
return reduce_from_model_parallel_region(out)
|
|
|
|
|
|
def convert_to_quantized_model(
|
|
model: Transformer,
|
|
config: MetaReferenceImplConfig,
|
|
fp8_activation_scale_ub: Optional[float] = 1200.0,
|
|
) -> Transformer:
|
|
if config.quantization.type == QuantizationType.bf16.value:
|
|
return model
|
|
|
|
elif config.quantization.type != QuantizationType.fp8.value:
|
|
raise ValueError("Only FP8 quantization is supported")
|
|
|
|
from .fp8_impls import Fp8ScaledWeights, load_fp8, quantize_fp8
|
|
|
|
checkpoint = config.checkpoint_config.checkpoint
|
|
# Move weights to GPU with quantization
|
|
if checkpoint.quantization_format == CheckpointQuantizationFormat.fp8_mixed.value:
|
|
cprint("Loading fp8 scales...", "yellow")
|
|
fp8_scales_path = os.path.join(
|
|
checkpoint.checkpoint_dir, f"fp8_scales_{get_model_parallel_rank()}.pt"
|
|
)
|
|
assert os.path.isfile(
|
|
fp8_scales_path
|
|
), f"fp8_scales_path not found for rank {get_model_parallel_rank()}"
|
|
fp8_scales = torch.load(fp8_scales_path, weights_only=True)
|
|
|
|
for block in model.layers:
|
|
if isinstance(block, TransformerBlock):
|
|
if block.layer_id == 0 or block.layer_id == (model.n_layers - 1):
|
|
continue
|
|
|
|
block.feed_forward.forward = swiglu_wrapper.__get__(block.feed_forward)
|
|
for key in ("w1", "w3", "w2"):
|
|
param = getattr(block.feed_forward, key)
|
|
param.weight = load_fp8(
|
|
param.weight,
|
|
fp8_scales[
|
|
f"{block.layer_id}_feed_forward.{key}_{get_model_parallel_rank()}"
|
|
],
|
|
fp8_activation_scale_ub,
|
|
)
|
|
else:
|
|
cprint("Quantizing fp8 weights from bf16...", "yellow")
|
|
for block in model.layers:
|
|
if isinstance(block, TransformerBlock):
|
|
if block.layer_id == 0 or block.layer_id == (model.n_layers - 1):
|
|
continue
|
|
block.feed_forward.forward = swiglu_wrapper.__get__(block.feed_forward)
|
|
for key in ("w1", "w3", "w2"):
|
|
param = getattr(block.feed_forward, key)
|
|
param.weight = quantize_fp8(
|
|
param.weight,
|
|
fp8_activation_scale_ub,
|
|
output_device=torch.device("cuda"),
|
|
)
|
|
|
|
for _, parameter in model.named_parameters():
|
|
if not isinstance(parameter, Fp8ScaledWeights):
|
|
parameter.data = parameter.to(device="cuda")
|
|
return model
|