forked from phoenix-oss/llama-stack-mirror
## What does this PR do? This is a long-pending change and particularly important to get done now. Specifically: - we cannot "localize" (aka download) any URLs from media attachments anywhere near our modeling code. it must be done within llama-stack. - `PIL.Image` is infesting all our APIs via `ImageMedia -> InterleavedTextMedia` and that cannot be right at all. Anything in the API surface must be "naturally serializable". We need a standard `{ type: "image", image_url: "<...>" }` which is more extensible - `UserMessage`, `SystemMessage`, etc. are moved completely to llama-stack from the llama-models repository. See https://github.com/meta-llama/llama-models/pull/244 for the corresponding PR in llama-models. ## Test Plan ```bash cd llama_stack/providers/tests pytest -s -v -k "fireworks or ollama or together" inference/test_vision_inference.py pytest -s -v -k "(fireworks or ollama or together) and llama_3b" inference/test_text_inference.py pytest -s -v -k chroma memory/test_memory.py \ --env EMBEDDING_DIMENSION=384 --env CHROMA_DB_PATH=/tmp/foobar pytest -s -v -k fireworks agents/test_agents.py \ --safety-shield=meta-llama/Llama-Guard-3-8B \ --inference-model=meta-llama/Llama-3.1-8B-Instruct ``` Updated the client sdk (see PR ...), installed the SDK in the same environment and then ran the SDK tests: ```bash cd tests/client-sdk LLAMA_STACK_CONFIG=together pytest -s -v agents/test_agents.py LLAMA_STACK_CONFIG=ollama pytest -s -v memory/test_memory.py # this one needed a bit of hacking in the run.yaml to ensure I could register the vision model correctly INFERENCE_MODEL=llama3.2-vision:latest LLAMA_STACK_CONFIG=ollama pytest -s -v inference/test_inference.py ```
308 lines
11 KiB
Python
308 lines
11 KiB
Python
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
|
# All rights reserved.
|
|
#
|
|
# This source code is licensed under the terms described in the LICENSE file in
|
|
# the root directory of this source tree.
|
|
|
|
|
|
import logging
|
|
from typing import AsyncGenerator, List, Optional
|
|
|
|
from huggingface_hub import AsyncInferenceClient, HfApi
|
|
from llama_models.llama3.api.chat_format import ChatFormat
|
|
from llama_models.llama3.api.tokenizer import Tokenizer
|
|
from llama_models.sku_list import all_registered_models
|
|
|
|
from llama_stack.apis.inference import * # noqa: F403
|
|
from llama_stack.apis.models import * # noqa: F403
|
|
|
|
from llama_stack.providers.datatypes import Model, ModelsProtocolPrivate
|
|
from llama_stack.providers.utils.inference.model_registry import (
|
|
build_model_alias,
|
|
ModelRegistryHelper,
|
|
)
|
|
|
|
from llama_stack.providers.utils.inference.openai_compat import (
|
|
get_sampling_options,
|
|
OpenAICompatCompletionChoice,
|
|
OpenAICompatCompletionResponse,
|
|
process_chat_completion_response,
|
|
process_chat_completion_stream_response,
|
|
process_completion_response,
|
|
process_completion_stream_response,
|
|
)
|
|
from llama_stack.providers.utils.inference.prompt_adapter import (
|
|
chat_completion_request_to_model_input_info,
|
|
completion_request_to_prompt_model_input_info,
|
|
)
|
|
|
|
from .config import InferenceAPIImplConfig, InferenceEndpointImplConfig, TGIImplConfig
|
|
|
|
log = logging.getLogger(__name__)
|
|
|
|
|
|
def build_model_aliases():
|
|
return [
|
|
build_model_alias(
|
|
model.huggingface_repo,
|
|
model.descriptor(),
|
|
)
|
|
for model in all_registered_models()
|
|
if model.huggingface_repo
|
|
]
|
|
|
|
|
|
class _HfAdapter(Inference, ModelsProtocolPrivate):
|
|
client: AsyncInferenceClient
|
|
max_tokens: int
|
|
model_id: str
|
|
|
|
def __init__(self) -> None:
|
|
self.formatter = ChatFormat(Tokenizer.get_instance())
|
|
self.register_helper = ModelRegistryHelper(build_model_aliases())
|
|
self.huggingface_repo_to_llama_model_id = {
|
|
model.huggingface_repo: model.descriptor()
|
|
for model in all_registered_models()
|
|
if model.huggingface_repo
|
|
}
|
|
|
|
async def shutdown(self) -> None:
|
|
pass
|
|
|
|
async def register_model(self, model: Model) -> None:
|
|
model = await self.register_helper.register_model(model)
|
|
if model.provider_resource_id != self.model_id:
|
|
raise ValueError(
|
|
f"Model {model.provider_resource_id} does not match the model {self.model_id} served by TGI."
|
|
)
|
|
return model
|
|
|
|
async def unregister_model(self, model_id: str) -> None:
|
|
pass
|
|
|
|
async def completion(
|
|
self,
|
|
model_id: str,
|
|
content: InterleavedContent,
|
|
sampling_params: Optional[SamplingParams] = SamplingParams(),
|
|
response_format: Optional[ResponseFormat] = None,
|
|
stream: Optional[bool] = False,
|
|
logprobs: Optional[LogProbConfig] = None,
|
|
) -> AsyncGenerator:
|
|
model = await self.model_store.get_model(model_id)
|
|
request = CompletionRequest(
|
|
model=model.provider_resource_id,
|
|
content=content,
|
|
sampling_params=sampling_params,
|
|
response_format=response_format,
|
|
stream=stream,
|
|
logprobs=logprobs,
|
|
)
|
|
if stream:
|
|
return self._stream_completion(request)
|
|
else:
|
|
return await self._nonstream_completion(request)
|
|
|
|
def _get_max_new_tokens(self, sampling_params, input_tokens):
|
|
return min(
|
|
sampling_params.max_tokens or (self.max_tokens - input_tokens),
|
|
self.max_tokens - input_tokens - 1,
|
|
)
|
|
|
|
def _build_options(
|
|
self,
|
|
sampling_params: Optional[SamplingParams] = None,
|
|
fmt: ResponseFormat = None,
|
|
):
|
|
options = get_sampling_options(sampling_params)
|
|
# delete key "max_tokens" from options since its not supported by the API
|
|
options.pop("max_tokens", None)
|
|
if fmt:
|
|
if fmt.type == ResponseFormatType.json_schema.value:
|
|
options["grammar"] = {
|
|
"type": "json",
|
|
"value": fmt.json_schema,
|
|
}
|
|
elif fmt.type == ResponseFormatType.grammar.value:
|
|
raise ValueError("Grammar response format not supported yet")
|
|
else:
|
|
raise ValueError(f"Unexpected response format: {fmt.type}")
|
|
|
|
return options
|
|
|
|
def _get_params_for_completion(self, request: CompletionRequest) -> dict:
|
|
prompt, input_tokens = completion_request_to_prompt_model_input_info(
|
|
request, self.formatter
|
|
)
|
|
|
|
return dict(
|
|
prompt=prompt,
|
|
stream=request.stream,
|
|
details=True,
|
|
max_new_tokens=self._get_max_new_tokens(
|
|
request.sampling_params, input_tokens
|
|
),
|
|
stop_sequences=["<|eom_id|>", "<|eot_id|>"],
|
|
**self._build_options(request.sampling_params, request.response_format),
|
|
)
|
|
|
|
async def _stream_completion(self, request: CompletionRequest) -> AsyncGenerator:
|
|
params = self._get_params_for_completion(request)
|
|
|
|
async def _generate_and_convert_to_openai_compat():
|
|
s = await self.client.text_generation(**params)
|
|
async for chunk in s:
|
|
token_result = chunk.token
|
|
finish_reason = None
|
|
if chunk.details:
|
|
finish_reason = chunk.details.finish_reason
|
|
|
|
choice = OpenAICompatCompletionChoice(
|
|
text=token_result.text, finish_reason=finish_reason
|
|
)
|
|
yield OpenAICompatCompletionResponse(
|
|
choices=[choice],
|
|
)
|
|
|
|
stream = _generate_and_convert_to_openai_compat()
|
|
async for chunk in process_completion_stream_response(stream, self.formatter):
|
|
yield chunk
|
|
|
|
async def _nonstream_completion(self, request: CompletionRequest) -> AsyncGenerator:
|
|
params = self._get_params_for_completion(request)
|
|
r = await self.client.text_generation(**params)
|
|
|
|
choice = OpenAICompatCompletionChoice(
|
|
finish_reason=r.details.finish_reason,
|
|
text="".join(t.text for t in r.details.tokens),
|
|
)
|
|
|
|
response = OpenAICompatCompletionResponse(
|
|
choices=[choice],
|
|
)
|
|
|
|
return process_completion_response(response, self.formatter)
|
|
|
|
async def chat_completion(
|
|
self,
|
|
model_id: str,
|
|
messages: List[Message],
|
|
sampling_params: Optional[SamplingParams] = SamplingParams(),
|
|
tools: Optional[List[ToolDefinition]] = None,
|
|
tool_choice: Optional[ToolChoice] = ToolChoice.auto,
|
|
tool_prompt_format: Optional[ToolPromptFormat] = ToolPromptFormat.json,
|
|
response_format: Optional[ResponseFormat] = None,
|
|
stream: Optional[bool] = False,
|
|
logprobs: Optional[LogProbConfig] = None,
|
|
) -> AsyncGenerator:
|
|
model = await self.model_store.get_model(model_id)
|
|
request = ChatCompletionRequest(
|
|
model=model.provider_resource_id,
|
|
messages=messages,
|
|
sampling_params=sampling_params,
|
|
tools=tools or [],
|
|
tool_choice=tool_choice,
|
|
tool_prompt_format=tool_prompt_format,
|
|
response_format=response_format,
|
|
stream=stream,
|
|
logprobs=logprobs,
|
|
)
|
|
|
|
if stream:
|
|
return self._stream_chat_completion(request)
|
|
else:
|
|
return await self._nonstream_chat_completion(request)
|
|
|
|
async def _nonstream_chat_completion(
|
|
self, request: ChatCompletionRequest
|
|
) -> ChatCompletionResponse:
|
|
params = self._get_params(request)
|
|
r = await self.client.text_generation(**params)
|
|
|
|
choice = OpenAICompatCompletionChoice(
|
|
finish_reason=r.details.finish_reason,
|
|
text="".join(t.text for t in r.details.tokens),
|
|
)
|
|
response = OpenAICompatCompletionResponse(
|
|
choices=[choice],
|
|
)
|
|
return process_chat_completion_response(response, self.formatter)
|
|
|
|
async def _stream_chat_completion(
|
|
self, request: ChatCompletionRequest
|
|
) -> AsyncGenerator:
|
|
params = self._get_params(request)
|
|
|
|
async def _generate_and_convert_to_openai_compat():
|
|
s = await self.client.text_generation(**params)
|
|
async for chunk in s:
|
|
token_result = chunk.token
|
|
|
|
choice = OpenAICompatCompletionChoice(text=token_result.text)
|
|
yield OpenAICompatCompletionResponse(
|
|
choices=[choice],
|
|
)
|
|
|
|
stream = _generate_and_convert_to_openai_compat()
|
|
async for chunk in process_chat_completion_stream_response(
|
|
stream, self.formatter
|
|
):
|
|
yield chunk
|
|
|
|
def _get_params(self, request: ChatCompletionRequest) -> dict:
|
|
prompt, input_tokens = chat_completion_request_to_model_input_info(
|
|
request, self.register_helper.get_llama_model(request.model), self.formatter
|
|
)
|
|
return dict(
|
|
prompt=prompt,
|
|
stream=request.stream,
|
|
details=True,
|
|
max_new_tokens=self._get_max_new_tokens(
|
|
request.sampling_params, input_tokens
|
|
),
|
|
stop_sequences=["<|eom_id|>", "<|eot_id|>"],
|
|
**self._build_options(request.sampling_params, request.response_format),
|
|
)
|
|
|
|
async def embeddings(
|
|
self,
|
|
model_id: str,
|
|
contents: List[InterleavedContent],
|
|
) -> EmbeddingsResponse:
|
|
raise NotImplementedError()
|
|
|
|
|
|
class TGIAdapter(_HfAdapter):
|
|
async def initialize(self, config: TGIImplConfig) -> None:
|
|
log.info(f"Initializing TGI client with url={config.url}")
|
|
self.client = AsyncInferenceClient(model=config.url, token=config.api_token)
|
|
endpoint_info = await self.client.get_endpoint_info()
|
|
self.max_tokens = endpoint_info["max_total_tokens"]
|
|
self.model_id = endpoint_info["model_id"]
|
|
|
|
|
|
class InferenceAPIAdapter(_HfAdapter):
|
|
async def initialize(self, config: InferenceAPIImplConfig) -> None:
|
|
self.client = AsyncInferenceClient(
|
|
model=config.huggingface_repo, token=config.api_token
|
|
)
|
|
endpoint_info = await self.client.get_endpoint_info()
|
|
self.max_tokens = endpoint_info["max_total_tokens"]
|
|
self.model_id = endpoint_info["model_id"]
|
|
|
|
|
|
class InferenceEndpointAdapter(_HfAdapter):
|
|
async def initialize(self, config: InferenceEndpointImplConfig) -> None:
|
|
# Get the inference endpoint details
|
|
api = HfApi(token=config.api_token)
|
|
endpoint = api.get_inference_endpoint(config.endpoint_name)
|
|
|
|
# Wait for the endpoint to be ready (if not already)
|
|
endpoint.wait(timeout=60)
|
|
|
|
# Initialize the adapter
|
|
self.client = endpoint.async_client
|
|
self.model_id = endpoint.repository
|
|
self.max_tokens = int(
|
|
endpoint.raw["model"]["image"]["custom"]["env"]["MAX_TOTAL_TOKENS"]
|
|
)
|