forked from phoenix-oss/llama-stack-mirror
## What does this PR do? This is a long-pending change and particularly important to get done now. Specifically: - we cannot "localize" (aka download) any URLs from media attachments anywhere near our modeling code. it must be done within llama-stack. - `PIL.Image` is infesting all our APIs via `ImageMedia -> InterleavedTextMedia` and that cannot be right at all. Anything in the API surface must be "naturally serializable". We need a standard `{ type: "image", image_url: "<...>" }` which is more extensible - `UserMessage`, `SystemMessage`, etc. are moved completely to llama-stack from the llama-models repository. See https://github.com/meta-llama/llama-models/pull/244 for the corresponding PR in llama-models. ## Test Plan ```bash cd llama_stack/providers/tests pytest -s -v -k "fireworks or ollama or together" inference/test_vision_inference.py pytest -s -v -k "(fireworks or ollama or together) and llama_3b" inference/test_text_inference.py pytest -s -v -k chroma memory/test_memory.py \ --env EMBEDDING_DIMENSION=384 --env CHROMA_DB_PATH=/tmp/foobar pytest -s -v -k fireworks agents/test_agents.py \ --safety-shield=meta-llama/Llama-Guard-3-8B \ --inference-model=meta-llama/Llama-3.1-8B-Instruct ``` Updated the client sdk (see PR ...), installed the SDK in the same environment and then ran the SDK tests: ```bash cd tests/client-sdk LLAMA_STACK_CONFIG=together pytest -s -v agents/test_agents.py LLAMA_STACK_CONFIG=ollama pytest -s -v memory/test_memory.py # this one needed a bit of hacking in the run.yaml to ensure I could register the vision model correctly INFERENCE_MODEL=llama3.2-vision:latest LLAMA_STACK_CONFIG=ollama pytest -s -v inference/test_inference.py ```
266 lines
9.4 KiB
Python
266 lines
9.4 KiB
Python
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
|
# All rights reserved.
|
|
#
|
|
# This source code is licensed under the terms described in the LICENSE file in
|
|
# the root directory of this source tree.
|
|
|
|
from typing import AsyncGenerator
|
|
|
|
from llama_models.datatypes import CoreModelId
|
|
|
|
from llama_models.llama3.api.chat_format import ChatFormat
|
|
|
|
from llama_models.llama3.api.tokenizer import Tokenizer
|
|
|
|
from together import Together
|
|
|
|
from llama_stack.apis.inference import * # noqa: F403
|
|
from llama_stack.distribution.request_headers import NeedsRequestProviderData
|
|
from llama_stack.providers.utils.inference.model_registry import (
|
|
build_model_alias,
|
|
ModelRegistryHelper,
|
|
)
|
|
from llama_stack.providers.utils.inference.openai_compat import (
|
|
convert_message_to_openai_dict,
|
|
get_sampling_options,
|
|
process_chat_completion_response,
|
|
process_chat_completion_stream_response,
|
|
process_completion_response,
|
|
process_completion_stream_response,
|
|
)
|
|
from llama_stack.providers.utils.inference.prompt_adapter import (
|
|
chat_completion_request_to_prompt,
|
|
completion_request_to_prompt,
|
|
content_has_media,
|
|
interleaved_content_as_str,
|
|
request_has_media,
|
|
)
|
|
|
|
from .config import TogetherImplConfig
|
|
|
|
|
|
MODEL_ALIASES = [
|
|
build_model_alias(
|
|
"meta-llama/Meta-Llama-3.1-8B-Instruct-Turbo",
|
|
CoreModelId.llama3_1_8b_instruct.value,
|
|
),
|
|
build_model_alias(
|
|
"meta-llama/Meta-Llama-3.1-70B-Instruct-Turbo",
|
|
CoreModelId.llama3_1_70b_instruct.value,
|
|
),
|
|
build_model_alias(
|
|
"meta-llama/Meta-Llama-3.1-405B-Instruct-Turbo",
|
|
CoreModelId.llama3_1_405b_instruct.value,
|
|
),
|
|
build_model_alias(
|
|
"meta-llama/Llama-3.2-3B-Instruct-Turbo",
|
|
CoreModelId.llama3_2_3b_instruct.value,
|
|
),
|
|
build_model_alias(
|
|
"meta-llama/Llama-3.2-11B-Vision-Instruct-Turbo",
|
|
CoreModelId.llama3_2_11b_vision_instruct.value,
|
|
),
|
|
build_model_alias(
|
|
"meta-llama/Llama-3.2-90B-Vision-Instruct-Turbo",
|
|
CoreModelId.llama3_2_90b_vision_instruct.value,
|
|
),
|
|
build_model_alias(
|
|
"meta-llama/Meta-Llama-Guard-3-8B",
|
|
CoreModelId.llama_guard_3_8b.value,
|
|
),
|
|
build_model_alias(
|
|
"meta-llama/Llama-Guard-3-11B-Vision-Turbo",
|
|
CoreModelId.llama_guard_3_11b_vision.value,
|
|
),
|
|
]
|
|
|
|
|
|
class TogetherInferenceAdapter(
|
|
ModelRegistryHelper, Inference, NeedsRequestProviderData
|
|
):
|
|
def __init__(self, config: TogetherImplConfig) -> None:
|
|
ModelRegistryHelper.__init__(self, MODEL_ALIASES)
|
|
self.config = config
|
|
self.formatter = ChatFormat(Tokenizer.get_instance())
|
|
|
|
async def initialize(self) -> None:
|
|
pass
|
|
|
|
async def shutdown(self) -> None:
|
|
pass
|
|
|
|
async def completion(
|
|
self,
|
|
model_id: str,
|
|
content: InterleavedContent,
|
|
sampling_params: Optional[SamplingParams] = SamplingParams(),
|
|
response_format: Optional[ResponseFormat] = None,
|
|
stream: Optional[bool] = False,
|
|
logprobs: Optional[LogProbConfig] = None,
|
|
) -> AsyncGenerator:
|
|
model = await self.model_store.get_model(model_id)
|
|
request = CompletionRequest(
|
|
model=model.provider_resource_id,
|
|
content=content,
|
|
sampling_params=sampling_params,
|
|
response_format=response_format,
|
|
stream=stream,
|
|
logprobs=logprobs,
|
|
)
|
|
if stream:
|
|
return self._stream_completion(request)
|
|
else:
|
|
return await self._nonstream_completion(request)
|
|
|
|
def _get_client(self) -> Together:
|
|
together_api_key = None
|
|
if self.config.api_key is not None:
|
|
together_api_key = self.config.api_key
|
|
else:
|
|
provider_data = self.get_request_provider_data()
|
|
if provider_data is None or not provider_data.together_api_key:
|
|
raise ValueError(
|
|
'Pass Together API Key in the header X-LlamaStack-ProviderData as { "together_api_key": <your api key>}'
|
|
)
|
|
together_api_key = provider_data.together_api_key
|
|
return Together(api_key=together_api_key)
|
|
|
|
async def _nonstream_completion(
|
|
self, request: CompletionRequest
|
|
) -> ChatCompletionResponse:
|
|
params = await self._get_params(request)
|
|
r = self._get_client().completions.create(**params)
|
|
return process_completion_response(r, self.formatter)
|
|
|
|
async def _stream_completion(self, request: CompletionRequest) -> AsyncGenerator:
|
|
params = await self._get_params(request)
|
|
|
|
# if we shift to TogetherAsyncClient, we won't need this wrapper
|
|
async def _to_async_generator():
|
|
s = self._get_client().completions.create(**params)
|
|
for chunk in s:
|
|
yield chunk
|
|
|
|
stream = _to_async_generator()
|
|
async for chunk in process_completion_stream_response(stream, self.formatter):
|
|
yield chunk
|
|
|
|
def _build_options(
|
|
self, sampling_params: Optional[SamplingParams], fmt: ResponseFormat
|
|
) -> dict:
|
|
options = get_sampling_options(sampling_params)
|
|
if fmt:
|
|
if fmt.type == ResponseFormatType.json_schema.value:
|
|
options["response_format"] = {
|
|
"type": "json_object",
|
|
"schema": fmt.json_schema,
|
|
}
|
|
elif fmt.type == ResponseFormatType.grammar.value:
|
|
raise NotImplementedError("Grammar response format not supported yet")
|
|
else:
|
|
raise ValueError(f"Unknown response format {fmt.type}")
|
|
|
|
return options
|
|
|
|
async def chat_completion(
|
|
self,
|
|
model_id: str,
|
|
messages: List[Message],
|
|
sampling_params: Optional[SamplingParams] = SamplingParams(),
|
|
tools: Optional[List[ToolDefinition]] = None,
|
|
tool_choice: Optional[ToolChoice] = ToolChoice.auto,
|
|
tool_prompt_format: Optional[ToolPromptFormat] = ToolPromptFormat.json,
|
|
response_format: Optional[ResponseFormat] = None,
|
|
stream: Optional[bool] = False,
|
|
logprobs: Optional[LogProbConfig] = None,
|
|
) -> AsyncGenerator:
|
|
model = await self.model_store.get_model(model_id)
|
|
request = ChatCompletionRequest(
|
|
model=model.provider_resource_id,
|
|
messages=messages,
|
|
sampling_params=sampling_params,
|
|
tools=tools or [],
|
|
tool_choice=tool_choice,
|
|
tool_prompt_format=tool_prompt_format,
|
|
response_format=response_format,
|
|
stream=stream,
|
|
logprobs=logprobs,
|
|
)
|
|
|
|
if stream:
|
|
return self._stream_chat_completion(request)
|
|
else:
|
|
return await self._nonstream_chat_completion(request)
|
|
|
|
async def _nonstream_chat_completion(
|
|
self, request: ChatCompletionRequest
|
|
) -> ChatCompletionResponse:
|
|
params = await self._get_params(request)
|
|
if "messages" in params:
|
|
r = self._get_client().chat.completions.create(**params)
|
|
else:
|
|
r = self._get_client().completions.create(**params)
|
|
return process_chat_completion_response(r, self.formatter)
|
|
|
|
async def _stream_chat_completion(
|
|
self, request: ChatCompletionRequest
|
|
) -> AsyncGenerator:
|
|
params = await self._get_params(request)
|
|
|
|
# if we shift to TogetherAsyncClient, we won't need this wrapper
|
|
async def _to_async_generator():
|
|
if "messages" in params:
|
|
s = self._get_client().chat.completions.create(**params)
|
|
else:
|
|
s = self._get_client().completions.create(**params)
|
|
for chunk in s:
|
|
yield chunk
|
|
|
|
stream = _to_async_generator()
|
|
async for chunk in process_chat_completion_stream_response(
|
|
stream, self.formatter
|
|
):
|
|
yield chunk
|
|
|
|
async def _get_params(
|
|
self, request: Union[ChatCompletionRequest, CompletionRequest]
|
|
) -> dict:
|
|
input_dict = {}
|
|
media_present = request_has_media(request)
|
|
if isinstance(request, ChatCompletionRequest):
|
|
if media_present:
|
|
input_dict["messages"] = [
|
|
await convert_message_to_openai_dict(m) for m in request.messages
|
|
]
|
|
else:
|
|
input_dict["prompt"] = chat_completion_request_to_prompt(
|
|
request, self.get_llama_model(request.model), self.formatter
|
|
)
|
|
else:
|
|
assert (
|
|
not media_present
|
|
), "Together does not support media for Completion requests"
|
|
input_dict["prompt"] = completion_request_to_prompt(request, self.formatter)
|
|
|
|
return {
|
|
"model": request.model,
|
|
**input_dict,
|
|
"stream": request.stream,
|
|
**self._build_options(request.sampling_params, request.response_format),
|
|
}
|
|
|
|
async def embeddings(
|
|
self,
|
|
model_id: str,
|
|
contents: List[InterleavedContent],
|
|
) -> EmbeddingsResponse:
|
|
model = await self.model_store.get_model(model_id)
|
|
assert all(
|
|
not content_has_media(content) for content in contents
|
|
), "Together does not support media for embeddings"
|
|
r = self._get_client().embeddings.create(
|
|
model=model.provider_resource_id,
|
|
input=[interleaved_content_as_str(content) for content in contents],
|
|
)
|
|
embeddings = [item.embedding for item in r.data]
|
|
return EmbeddingsResponse(embeddings=embeddings)
|