forked from phoenix-oss/llama-stack-mirror
## What does this PR do? This is a long-pending change and particularly important to get done now. Specifically: - we cannot "localize" (aka download) any URLs from media attachments anywhere near our modeling code. it must be done within llama-stack. - `PIL.Image` is infesting all our APIs via `ImageMedia -> InterleavedTextMedia` and that cannot be right at all. Anything in the API surface must be "naturally serializable". We need a standard `{ type: "image", image_url: "<...>" }` which is more extensible - `UserMessage`, `SystemMessage`, etc. are moved completely to llama-stack from the llama-models repository. See https://github.com/meta-llama/llama-models/pull/244 for the corresponding PR in llama-models. ## Test Plan ```bash cd llama_stack/providers/tests pytest -s -v -k "fireworks or ollama or together" inference/test_vision_inference.py pytest -s -v -k "(fireworks or ollama or together) and llama_3b" inference/test_text_inference.py pytest -s -v -k chroma memory/test_memory.py \ --env EMBEDDING_DIMENSION=384 --env CHROMA_DB_PATH=/tmp/foobar pytest -s -v -k fireworks agents/test_agents.py \ --safety-shield=meta-llama/Llama-Guard-3-8B \ --inference-model=meta-llama/Llama-3.1-8B-Instruct ``` Updated the client sdk (see PR ...), installed the SDK in the same environment and then ran the SDK tests: ```bash cd tests/client-sdk LLAMA_STACK_CONFIG=together pytest -s -v agents/test_agents.py LLAMA_STACK_CONFIG=ollama pytest -s -v memory/test_memory.py # this one needed a bit of hacking in the run.yaml to ensure I could register the vision model correctly INFERENCE_MODEL=llama3.2-vision:latest LLAMA_STACK_CONFIG=ollama pytest -s -v inference/test_inference.py ```
143 lines
4.5 KiB
Python
143 lines
4.5 KiB
Python
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
|
# All rights reserved.
|
|
#
|
|
# This source code is licensed under the terms described in the LICENSE file in
|
|
# the root directory of this source tree.
|
|
|
|
import os
|
|
import tempfile
|
|
|
|
import pytest
|
|
import pytest_asyncio
|
|
|
|
from llama_stack.apis.inference import ModelInput, ModelType
|
|
|
|
from llama_stack.distribution.datatypes import Api, Provider
|
|
from llama_stack.providers.inline.memory.chroma import ChromaInlineImplConfig
|
|
from llama_stack.providers.inline.memory.faiss import FaissImplConfig
|
|
from llama_stack.providers.remote.memory.chroma import ChromaRemoteImplConfig
|
|
from llama_stack.providers.remote.memory.pgvector import PGVectorConfig
|
|
from llama_stack.providers.remote.memory.weaviate import WeaviateConfig
|
|
from llama_stack.providers.tests.resolver import construct_stack_for_test
|
|
from llama_stack.providers.utils.kvstore import SqliteKVStoreConfig
|
|
from ..conftest import ProviderFixture, remote_stack_fixture
|
|
from ..env import get_env_or_fail
|
|
|
|
|
|
@pytest.fixture(scope="session")
|
|
def embedding_model(request):
|
|
if hasattr(request, "param"):
|
|
return request.param
|
|
return request.config.getoption("--embedding-model", None)
|
|
|
|
|
|
@pytest.fixture(scope="session")
|
|
def memory_remote() -> ProviderFixture:
|
|
return remote_stack_fixture()
|
|
|
|
|
|
@pytest.fixture(scope="session")
|
|
def memory_faiss() -> ProviderFixture:
|
|
temp_file = tempfile.NamedTemporaryFile(delete=False, suffix=".db")
|
|
return ProviderFixture(
|
|
providers=[
|
|
Provider(
|
|
provider_id="faiss",
|
|
provider_type="inline::faiss",
|
|
config=FaissImplConfig(
|
|
kvstore=SqliteKVStoreConfig(db_path=temp_file.name).model_dump(),
|
|
).model_dump(),
|
|
)
|
|
],
|
|
)
|
|
|
|
|
|
@pytest.fixture(scope="session")
|
|
def memory_pgvector() -> ProviderFixture:
|
|
return ProviderFixture(
|
|
providers=[
|
|
Provider(
|
|
provider_id="pgvector",
|
|
provider_type="remote::pgvector",
|
|
config=PGVectorConfig(
|
|
host=os.getenv("PGVECTOR_HOST", "localhost"),
|
|
port=os.getenv("PGVECTOR_PORT", 5432),
|
|
db=get_env_or_fail("PGVECTOR_DB"),
|
|
user=get_env_or_fail("PGVECTOR_USER"),
|
|
password=get_env_or_fail("PGVECTOR_PASSWORD"),
|
|
).model_dump(),
|
|
)
|
|
],
|
|
)
|
|
|
|
|
|
@pytest.fixture(scope="session")
|
|
def memory_weaviate() -> ProviderFixture:
|
|
return ProviderFixture(
|
|
providers=[
|
|
Provider(
|
|
provider_id="weaviate",
|
|
provider_type="remote::weaviate",
|
|
config=WeaviateConfig().model_dump(),
|
|
)
|
|
],
|
|
provider_data=dict(
|
|
weaviate_api_key=get_env_or_fail("WEAVIATE_API_KEY"),
|
|
weaviate_cluster_url=get_env_or_fail("WEAVIATE_CLUSTER_URL"),
|
|
),
|
|
)
|
|
|
|
|
|
@pytest.fixture(scope="session")
|
|
def memory_chroma() -> ProviderFixture:
|
|
url = os.getenv("CHROMA_URL")
|
|
if url:
|
|
config = ChromaRemoteImplConfig(url=url)
|
|
provider_type = "remote::chromadb"
|
|
else:
|
|
if not os.getenv("CHROMA_DB_PATH"):
|
|
raise ValueError("CHROMA_DB_PATH or CHROMA_URL must be set")
|
|
config = ChromaInlineImplConfig(db_path=os.getenv("CHROMA_DB_PATH"))
|
|
provider_type = "inline::chromadb"
|
|
return ProviderFixture(
|
|
providers=[
|
|
Provider(
|
|
provider_id="chroma",
|
|
provider_type=provider_type,
|
|
config=config.model_dump(),
|
|
)
|
|
]
|
|
)
|
|
|
|
|
|
MEMORY_FIXTURES = ["faiss", "pgvector", "weaviate", "remote", "chroma"]
|
|
|
|
|
|
@pytest_asyncio.fixture(scope="session")
|
|
async def memory_stack(embedding_model, request):
|
|
fixture_dict = request.param
|
|
|
|
providers = {}
|
|
provider_data = {}
|
|
for key in ["inference", "memory"]:
|
|
fixture = request.getfixturevalue(f"{key}_{fixture_dict[key]}")
|
|
providers[key] = fixture.providers
|
|
if fixture.provider_data:
|
|
provider_data.update(fixture.provider_data)
|
|
|
|
test_stack = await construct_stack_for_test(
|
|
[Api.memory, Api.inference],
|
|
providers,
|
|
provider_data,
|
|
models=[
|
|
ModelInput(
|
|
model_id=embedding_model,
|
|
model_type=ModelType.embedding,
|
|
metadata={
|
|
"embedding_dimension": get_env_or_fail("EMBEDDING_DIMENSION"),
|
|
},
|
|
)
|
|
],
|
|
)
|
|
|
|
return test_stack.impls[Api.memory], test_stack.impls[Api.memory_banks]
|