forked from phoenix-oss/llama-stack-mirror
## What does this PR do? This is a long-pending change and particularly important to get done now. Specifically: - we cannot "localize" (aka download) any URLs from media attachments anywhere near our modeling code. it must be done within llama-stack. - `PIL.Image` is infesting all our APIs via `ImageMedia -> InterleavedTextMedia` and that cannot be right at all. Anything in the API surface must be "naturally serializable". We need a standard `{ type: "image", image_url: "<...>" }` which is more extensible - `UserMessage`, `SystemMessage`, etc. are moved completely to llama-stack from the llama-models repository. See https://github.com/meta-llama/llama-models/pull/244 for the corresponding PR in llama-models. ## Test Plan ```bash cd llama_stack/providers/tests pytest -s -v -k "fireworks or ollama or together" inference/test_vision_inference.py pytest -s -v -k "(fireworks or ollama or together) and llama_3b" inference/test_text_inference.py pytest -s -v -k chroma memory/test_memory.py \ --env EMBEDDING_DIMENSION=384 --env CHROMA_DB_PATH=/tmp/foobar pytest -s -v -k fireworks agents/test_agents.py \ --safety-shield=meta-llama/Llama-Guard-3-8B \ --inference-model=meta-llama/Llama-3.1-8B-Instruct ``` Updated the client sdk (see PR ...), installed the SDK in the same environment and then ran the SDK tests: ```bash cd tests/client-sdk LLAMA_STACK_CONFIG=together pytest -s -v agents/test_agents.py LLAMA_STACK_CONFIG=ollama pytest -s -v memory/test_memory.py # this one needed a bit of hacking in the run.yaml to ensure I could register the vision model correctly INFERENCE_MODEL=llama3.2-vision:latest LLAMA_STACK_CONFIG=ollama pytest -s -v inference/test_inference.py ```
188 lines
6.5 KiB
Python
188 lines
6.5 KiB
Python
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
|
# All rights reserved.
|
|
#
|
|
# This source code is licensed under the terms described in the LICENSE file in
|
|
# the root directory of this source tree.
|
|
|
|
import uuid
|
|
|
|
import pytest
|
|
|
|
from llama_stack.apis.memory import * # noqa: F403
|
|
from llama_stack.distribution.datatypes import * # noqa: F403
|
|
from llama_stack.apis.memory_banks.memory_banks import VectorMemoryBankParams
|
|
|
|
# How to run this test:
|
|
#
|
|
# pytest llama_stack/providers/tests/memory/test_memory.py
|
|
# -m "meta_reference"
|
|
# -v -s --tb=short --disable-warnings
|
|
|
|
|
|
@pytest.fixture
|
|
def sample_documents():
|
|
return [
|
|
MemoryBankDocument(
|
|
document_id="doc1",
|
|
content="Python is a high-level programming language.",
|
|
metadata={"category": "programming", "difficulty": "beginner"},
|
|
),
|
|
MemoryBankDocument(
|
|
document_id="doc2",
|
|
content="Machine learning is a subset of artificial intelligence.",
|
|
metadata={"category": "AI", "difficulty": "advanced"},
|
|
),
|
|
MemoryBankDocument(
|
|
document_id="doc3",
|
|
content="Data structures are fundamental to computer science.",
|
|
metadata={"category": "computer science", "difficulty": "intermediate"},
|
|
),
|
|
MemoryBankDocument(
|
|
document_id="doc4",
|
|
content="Neural networks are inspired by biological neural networks.",
|
|
metadata={"category": "AI", "difficulty": "advanced"},
|
|
),
|
|
]
|
|
|
|
|
|
async def register_memory_bank(
|
|
banks_impl: MemoryBanks, embedding_model: str
|
|
) -> MemoryBank:
|
|
bank_id = f"test_bank_{uuid.uuid4().hex}"
|
|
return await banks_impl.register_memory_bank(
|
|
memory_bank_id=bank_id,
|
|
params=VectorMemoryBankParams(
|
|
embedding_model=embedding_model,
|
|
chunk_size_in_tokens=512,
|
|
overlap_size_in_tokens=64,
|
|
),
|
|
)
|
|
|
|
|
|
class TestMemory:
|
|
@pytest.mark.asyncio
|
|
async def test_banks_list(self, memory_stack, embedding_model):
|
|
_, banks_impl = memory_stack
|
|
|
|
# Register a test bank
|
|
registered_bank = await register_memory_bank(banks_impl, embedding_model)
|
|
|
|
try:
|
|
# Verify our bank shows up in list
|
|
response = await banks_impl.list_memory_banks()
|
|
assert isinstance(response, list)
|
|
assert any(
|
|
bank.memory_bank_id == registered_bank.memory_bank_id
|
|
for bank in response
|
|
)
|
|
finally:
|
|
# Clean up
|
|
await banks_impl.unregister_memory_bank(registered_bank.memory_bank_id)
|
|
|
|
# Verify our bank was removed
|
|
response = await banks_impl.list_memory_banks()
|
|
assert all(
|
|
bank.memory_bank_id != registered_bank.memory_bank_id for bank in response
|
|
)
|
|
|
|
@pytest.mark.asyncio
|
|
async def test_banks_register(self, memory_stack, embedding_model):
|
|
_, banks_impl = memory_stack
|
|
|
|
bank_id = f"test_bank_{uuid.uuid4().hex}"
|
|
|
|
try:
|
|
# Register initial bank
|
|
await banks_impl.register_memory_bank(
|
|
memory_bank_id=bank_id,
|
|
params=VectorMemoryBankParams(
|
|
embedding_model=embedding_model,
|
|
chunk_size_in_tokens=512,
|
|
overlap_size_in_tokens=64,
|
|
),
|
|
)
|
|
|
|
# Verify our bank exists
|
|
response = await banks_impl.list_memory_banks()
|
|
assert isinstance(response, list)
|
|
assert any(bank.memory_bank_id == bank_id for bank in response)
|
|
|
|
# Try registering same bank again
|
|
await banks_impl.register_memory_bank(
|
|
memory_bank_id=bank_id,
|
|
params=VectorMemoryBankParams(
|
|
embedding_model=embedding_model,
|
|
chunk_size_in_tokens=512,
|
|
overlap_size_in_tokens=64,
|
|
),
|
|
)
|
|
|
|
# Verify still only one instance of our bank
|
|
response = await banks_impl.list_memory_banks()
|
|
assert isinstance(response, list)
|
|
assert (
|
|
len([bank for bank in response if bank.memory_bank_id == bank_id]) == 1
|
|
)
|
|
finally:
|
|
# Clean up
|
|
await banks_impl.unregister_memory_bank(bank_id)
|
|
|
|
@pytest.mark.asyncio
|
|
async def test_query_documents(
|
|
self, memory_stack, embedding_model, sample_documents
|
|
):
|
|
memory_impl, banks_impl = memory_stack
|
|
|
|
with pytest.raises(ValueError):
|
|
await memory_impl.insert_documents("test_bank", sample_documents)
|
|
|
|
registered_bank = await register_memory_bank(banks_impl, embedding_model)
|
|
await memory_impl.insert_documents(
|
|
registered_bank.memory_bank_id, sample_documents
|
|
)
|
|
|
|
query1 = "programming language"
|
|
response1 = await memory_impl.query_documents(
|
|
registered_bank.memory_bank_id, query1
|
|
)
|
|
assert_valid_response(response1)
|
|
assert any("Python" in chunk.content for chunk in response1.chunks)
|
|
|
|
# Test case 3: Query with semantic similarity
|
|
query3 = "AI and brain-inspired computing"
|
|
response3 = await memory_impl.query_documents(
|
|
registered_bank.memory_bank_id, query3
|
|
)
|
|
assert_valid_response(response3)
|
|
assert any(
|
|
"neural networks" in chunk.content.lower() for chunk in response3.chunks
|
|
)
|
|
|
|
# Test case 4: Query with limit on number of results
|
|
query4 = "computer"
|
|
params4 = {"max_chunks": 2}
|
|
response4 = await memory_impl.query_documents(
|
|
registered_bank.memory_bank_id, query4, params4
|
|
)
|
|
assert_valid_response(response4)
|
|
assert len(response4.chunks) <= 2
|
|
|
|
# Test case 5: Query with threshold on similarity score
|
|
query5 = "quantum computing" # Not directly related to any document
|
|
params5 = {"score_threshold": 0.01}
|
|
response5 = await memory_impl.query_documents(
|
|
registered_bank.memory_bank_id, query5, params5
|
|
)
|
|
assert_valid_response(response5)
|
|
print("The scores are:", response5.scores)
|
|
assert all(score >= 0.01 for score in response5.scores)
|
|
|
|
|
|
def assert_valid_response(response: QueryDocumentsResponse):
|
|
assert isinstance(response, QueryDocumentsResponse)
|
|
assert len(response.chunks) > 0
|
|
assert len(response.scores) > 0
|
|
assert len(response.chunks) == len(response.scores)
|
|
for chunk in response.chunks:
|
|
assert isinstance(chunk.content, str)
|
|
assert chunk.document_id is not None
|