llama-stack/llama_stack/providers/inline/agents/meta_reference/openai_responses.py
Ben Browning 8dfce2f596
feat: OpenAI Responses API (#1989)
# What does this PR do?

This provides an initial [OpenAI Responses
API](https://platform.openai.com/docs/api-reference/responses)
implementation. The API is not yet complete, and this is more a
proof-of-concept to show how we can store responses in our key-value
stores and use them to support the Responses API concepts like
`previous_response_id`.

## Test Plan

I've added a new
`tests/integration/openai_responses/test_openai_responses.py` as part of
a test-driven development for this new API. I'm only testing this
locally with the remote-vllm provider for now, but it should work with
any of our inference providers since the only API it requires out of the
inference provider is the `openai_chat_completion` endpoint.

```
VLLM_URL="http://localhost:8000/v1" \
INFERENCE_MODEL="meta-llama/Llama-3.2-3B-Instruct" \
llama stack build --template remote-vllm --image-type venv --run
```

```
LLAMA_STACK_CONFIG="http://localhost:8321" \
python -m pytest -v \
  tests/integration/openai_responses/test_openai_responses.py \
  --text-model "meta-llama/Llama-3.2-3B-Instruct"
 ```

---------

Signed-off-by: Ben Browning <bbrownin@redhat.com>
Co-authored-by: Ashwin Bharambe <ashwin.bharambe@gmail.com>
2025-04-28 14:06:00 -07:00

319 lines
13 KiB
Python

# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
import json
import uuid
from typing import AsyncIterator, List, Optional, Union, cast
from openai.types.chat import ChatCompletionToolParam
from llama_stack.apis.agents.openai_responses import (
OpenAIResponseInputMessage,
OpenAIResponseInputMessageContentImage,
OpenAIResponseInputMessageContentText,
OpenAIResponseInputTool,
OpenAIResponseObject,
OpenAIResponseObjectStream,
OpenAIResponseObjectStreamResponseCompleted,
OpenAIResponseObjectStreamResponseCreated,
OpenAIResponseOutput,
OpenAIResponseOutputMessage,
OpenAIResponseOutputMessageContentOutputText,
OpenAIResponseOutputMessageWebSearchToolCall,
)
from llama_stack.apis.inference.inference import (
Inference,
OpenAIAssistantMessageParam,
OpenAIChatCompletion,
OpenAIChatCompletionContentPartImageParam,
OpenAIChatCompletionContentPartParam,
OpenAIChatCompletionContentPartTextParam,
OpenAIChatCompletionToolCallFunction,
OpenAIChoice,
OpenAIImageURL,
OpenAIMessageParam,
OpenAIToolMessageParam,
OpenAIUserMessageParam,
)
from llama_stack.apis.tools.tools import ToolGroups, ToolInvocationResult, ToolRuntime
from llama_stack.log import get_logger
from llama_stack.models.llama.datatypes import ToolDefinition, ToolParamDefinition
from llama_stack.providers.utils.inference.openai_compat import convert_tooldef_to_openai_tool
from llama_stack.providers.utils.kvstore import KVStore
logger = get_logger(name=__name__, category="openai_responses")
OPENAI_RESPONSES_PREFIX = "openai_responses:"
async def _previous_response_to_messages(previous_response: OpenAIResponseObject) -> List[OpenAIMessageParam]:
messages: List[OpenAIMessageParam] = []
for output_message in previous_response.output:
if isinstance(output_message, OpenAIResponseOutputMessage):
messages.append(OpenAIAssistantMessageParam(content=output_message.content[0].text))
return messages
async def _openai_choices_to_output_messages(choices: List[OpenAIChoice]) -> List[OpenAIResponseOutputMessage]:
output_messages = []
for choice in choices:
output_content = ""
if isinstance(choice.message.content, str):
output_content = choice.message.content
elif isinstance(choice.message.content, OpenAIChatCompletionContentPartTextParam):
output_content = choice.message.content.text
# TODO: handle image content
output_messages.append(
OpenAIResponseOutputMessage(
id=f"msg_{uuid.uuid4()}",
content=[OpenAIResponseOutputMessageContentOutputText(text=output_content)],
status="completed",
)
)
return output_messages
class OpenAIResponsesImpl:
def __init__(
self,
persistence_store: KVStore,
inference_api: Inference,
tool_groups_api: ToolGroups,
tool_runtime_api: ToolRuntime,
):
self.persistence_store = persistence_store
self.inference_api = inference_api
self.tool_groups_api = tool_groups_api
self.tool_runtime_api = tool_runtime_api
async def get_openai_response(
self,
id: str,
) -> OpenAIResponseObject:
key = f"{OPENAI_RESPONSES_PREFIX}{id}"
response_json = await self.persistence_store.get(key=key)
if response_json is None:
raise ValueError(f"OpenAI response with id '{id}' not found")
return OpenAIResponseObject.model_validate_json(response_json)
async def create_openai_response(
self,
input: Union[str, List[OpenAIResponseInputMessage]],
model: str,
previous_response_id: Optional[str] = None,
store: Optional[bool] = True,
stream: Optional[bool] = False,
tools: Optional[List[OpenAIResponseInputTool]] = None,
):
stream = False if stream is None else stream
messages: List[OpenAIMessageParam] = []
if previous_response_id:
previous_response = await self.get_openai_response(previous_response_id)
messages.extend(await _previous_response_to_messages(previous_response))
# TODO: refactor this user_content parsing out into a separate method
user_content: Union[str, List[OpenAIChatCompletionContentPartParam]] = ""
if isinstance(input, list):
user_content = []
for user_input in input:
if isinstance(user_input.content, list):
for user_input_content in user_input.content:
if isinstance(user_input_content, OpenAIResponseInputMessageContentText):
user_content.append(OpenAIChatCompletionContentPartTextParam(text=user_input_content.text))
elif isinstance(user_input_content, OpenAIResponseInputMessageContentImage):
if user_input_content.image_url:
image_url = OpenAIImageURL(
url=user_input_content.image_url, detail=user_input_content.detail
)
user_content.append(OpenAIChatCompletionContentPartImageParam(image_url=image_url))
else:
user_content.append(OpenAIChatCompletionContentPartTextParam(text=user_input.content))
else:
user_content = input
messages.append(OpenAIUserMessageParam(content=user_content))
chat_tools = await self._convert_response_tools_to_chat_tools(tools) if tools else None
chat_response = await self.inference_api.openai_chat_completion(
model=model,
messages=messages,
tools=chat_tools,
stream=stream,
)
if stream:
# TODO: refactor this into a separate method that handles streaming
chat_response_id = ""
chat_response_content = []
# TODO: these chunk_ fields are hacky and only take the last chunk into account
chunk_created = 0
chunk_model = ""
chunk_finish_reason = ""
async for chunk in chat_response:
chat_response_id = chunk.id
chunk_created = chunk.created
chunk_model = chunk.model
for chunk_choice in chunk.choices:
# TODO: this only works for text content
chat_response_content.append(chunk_choice.delta.content or "")
if chunk_choice.finish_reason:
chunk_finish_reason = chunk_choice.finish_reason
assistant_message = OpenAIAssistantMessageParam(content="".join(chat_response_content))
chat_response = OpenAIChatCompletion(
id=chat_response_id,
choices=[
OpenAIChoice(
message=assistant_message,
finish_reason=chunk_finish_reason,
index=0,
)
],
created=chunk_created,
model=chunk_model,
)
else:
# dump and reload to map to our pydantic types
chat_response = OpenAIChatCompletion(**chat_response.model_dump())
output_messages: List[OpenAIResponseOutput] = []
if chat_response.choices[0].message.tool_calls:
output_messages.extend(
await self._execute_tool_and_return_final_output(model, stream, chat_response, messages)
)
else:
output_messages.extend(await _openai_choices_to_output_messages(chat_response.choices))
response = OpenAIResponseObject(
created_at=chat_response.created,
id=f"resp-{uuid.uuid4()}",
model=model,
object="response",
status="completed",
output=output_messages,
)
if store:
# Store in kvstore
key = f"{OPENAI_RESPONSES_PREFIX}{response.id}"
await self.persistence_store.set(
key=key,
value=response.model_dump_json(),
)
if stream:
async def async_response() -> AsyncIterator[OpenAIResponseObjectStream]:
# TODO: response created should actually get emitted much earlier in the process
yield OpenAIResponseObjectStreamResponseCreated(response=response)
yield OpenAIResponseObjectStreamResponseCompleted(response=response)
return async_response()
return response
async def _convert_response_tools_to_chat_tools(
self, tools: List[OpenAIResponseInputTool]
) -> List[ChatCompletionToolParam]:
chat_tools: List[ChatCompletionToolParam] = []
for input_tool in tools:
# TODO: Handle other tool types
if input_tool.type == "web_search":
tool_name = "web_search"
tool = await self.tool_groups_api.get_tool(tool_name)
tool_def = ToolDefinition(
tool_name=tool_name,
description=tool.description,
parameters={
param.name: ToolParamDefinition(
param_type=param.parameter_type,
description=param.description,
required=param.required,
default=param.default,
)
for param in tool.parameters
},
)
chat_tool = convert_tooldef_to_openai_tool(tool_def)
chat_tools.append(chat_tool)
else:
raise ValueError(f"Llama Stack OpenAI Responses does not yet support tool type: {input_tool.type}")
return chat_tools
async def _execute_tool_and_return_final_output(
self, model_id: str, stream: bool, chat_response: OpenAIChatCompletion, messages: List[OpenAIMessageParam]
) -> List[OpenAIResponseOutput]:
output_messages: List[OpenAIResponseOutput] = []
choice = chat_response.choices[0]
# If the choice is not an assistant message, we don't need to execute any tools
if not isinstance(choice.message, OpenAIAssistantMessageParam):
return output_messages
# If the assistant message doesn't have any tool calls, we don't need to execute any tools
if not choice.message.tool_calls:
return output_messages
# Add the assistant message with tool_calls response to the messages list
messages.append(choice.message)
for tool_call in choice.message.tool_calls:
tool_call_id = tool_call.id
function = tool_call.function
# If for some reason the tool call doesn't have a function or id, we can't execute it
if not function or not tool_call_id:
continue
# TODO: telemetry spans for tool calls
result = await self._execute_tool_call(function)
# Handle tool call failure
if not result:
output_messages.append(
OpenAIResponseOutputMessageWebSearchToolCall(
id=tool_call_id,
status="failed",
)
)
continue
output_messages.append(
OpenAIResponseOutputMessageWebSearchToolCall(
id=tool_call_id,
status="completed",
),
)
result_content = ""
# TODO: handle other result content types and lists
if isinstance(result.content, str):
result_content = result.content
messages.append(OpenAIToolMessageParam(content=result_content, tool_call_id=tool_call_id))
tool_results_chat_response = await self.inference_api.openai_chat_completion(
model=model_id,
messages=messages,
stream=stream,
)
# type cast to appease mypy
tool_results_chat_response = cast(OpenAIChatCompletion, tool_results_chat_response)
tool_final_outputs = await _openai_choices_to_output_messages(tool_results_chat_response.choices)
# TODO: Wire in annotations with URLs, titles, etc to these output messages
output_messages.extend(tool_final_outputs)
return output_messages
async def _execute_tool_call(
self,
function: OpenAIChatCompletionToolCallFunction,
) -> Optional[ToolInvocationResult]:
if not function.name:
return None
function_args = json.loads(function.arguments) if function.arguments else {}
logger.info(f"executing tool call: {function.name} with args: {function_args}")
result = await self.tool_runtime_api.invoke_tool(
tool_name=function.name,
kwargs=function_args,
)
logger.debug(f"tool call {function.name} completed with result: {result}")
return result