forked from phoenix-oss/llama-stack-mirror
# What does this PR do? This is a combination of what was previously 3 separate PRs - #2069, #2075, and #2083. It turns out all 3 of those are needed to land a working function calling Responses implementation. The web search builtin tool was already working, but this wires in support for custom function calling. I ended up combining all three into one PR because they all had lots of merge conflicts, both with each other but also with #1806 that just landed. And, because landing any of them individually would have only left a partially working implementation merged. The new things added here are: * Storing of input items from previous responses and restoring of those input items when adding previous responses to the conversation state * Handling of multiple input item messages roles, not just "user" messages. * Support for custom tools passed into the Responses API to enable function calling outside of just the builtin websearch tool. Closes #2074 Closes #2080 ## Test Plan ### Unit Tests Several new unit tests were added, and they all pass. Ran via: ``` python -m pytest -s -v tests/unit/providers/agents/meta_reference/test_openai_responses.py ``` ### Responses API Verification Tests I ran our verification run.yaml against multiple providers to ensure we were getting a decent pass rate. Specifically, I ensured the new custom tool verification test passed across multiple providers and that the multi-turn examples passed across at least some of the providers (some providers struggle with the multi-turn workflows still). Running the stack setup for verification testing: ``` llama stack run --image-type venv tests/verifications/openai-api-verification-run.yaml ``` Together, passing 100% as an example: ``` pytest -s -v 'tests/verifications/openai_api/test_responses.py' --provider=together-llama-stack ``` ## Documentation We will need to start documenting the OpenAI APIs, but for now the Responses stuff is still rapidly evolving so delaying that. --------- Signed-off-by: Derek Higgins <derekh@redhat.com> Signed-off-by: Ben Browning <bbrownin@redhat.com> Co-authored-by: Derek Higgins <derekh@redhat.com> Co-authored-by: Ashwin Bharambe <ashwin.bharambe@gmail.com>
324 lines
11 KiB
Python
324 lines
11 KiB
Python
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
|
# All rights reserved.
|
|
#
|
|
# This source code is licensed under the terms described in the LICENSE file in
|
|
# the root directory of this source tree.
|
|
|
|
import logging
|
|
import uuid
|
|
from collections.abc import AsyncGenerator
|
|
from datetime import datetime, timezone
|
|
|
|
from llama_stack.apis.agents import (
|
|
Agent,
|
|
AgentConfig,
|
|
AgentCreateResponse,
|
|
Agents,
|
|
AgentSessionCreateResponse,
|
|
AgentStepResponse,
|
|
AgentToolGroup,
|
|
AgentTurnCreateRequest,
|
|
AgentTurnResumeRequest,
|
|
Document,
|
|
OpenAIResponseInput,
|
|
OpenAIResponseInputTool,
|
|
OpenAIResponseObject,
|
|
Session,
|
|
Turn,
|
|
)
|
|
from llama_stack.apis.common.responses import PaginatedResponse
|
|
from llama_stack.apis.inference import (
|
|
Inference,
|
|
ToolConfig,
|
|
ToolResponse,
|
|
ToolResponseMessage,
|
|
UserMessage,
|
|
)
|
|
from llama_stack.apis.safety import Safety
|
|
from llama_stack.apis.tools import ToolGroups, ToolRuntime
|
|
from llama_stack.apis.vector_io import VectorIO
|
|
from llama_stack.providers.utils.kvstore import InmemoryKVStoreImpl, kvstore_impl
|
|
from llama_stack.providers.utils.pagination import paginate_records
|
|
|
|
from .agent_instance import ChatAgent
|
|
from .config import MetaReferenceAgentsImplConfig
|
|
from .openai_responses import OpenAIResponsesImpl
|
|
from .persistence import AgentInfo
|
|
|
|
logger = logging.getLogger()
|
|
|
|
|
|
class MetaReferenceAgentsImpl(Agents):
|
|
def __init__(
|
|
self,
|
|
config: MetaReferenceAgentsImplConfig,
|
|
inference_api: Inference,
|
|
vector_io_api: VectorIO,
|
|
safety_api: Safety,
|
|
tool_runtime_api: ToolRuntime,
|
|
tool_groups_api: ToolGroups,
|
|
):
|
|
self.config = config
|
|
self.inference_api = inference_api
|
|
self.vector_io_api = vector_io_api
|
|
self.safety_api = safety_api
|
|
self.tool_runtime_api = tool_runtime_api
|
|
self.tool_groups_api = tool_groups_api
|
|
|
|
self.in_memory_store = InmemoryKVStoreImpl()
|
|
self.openai_responses_impl = None
|
|
|
|
async def initialize(self) -> None:
|
|
self.persistence_store = await kvstore_impl(self.config.persistence_store)
|
|
self.openai_responses_impl = OpenAIResponsesImpl(
|
|
self.persistence_store,
|
|
inference_api=self.inference_api,
|
|
tool_groups_api=self.tool_groups_api,
|
|
tool_runtime_api=self.tool_runtime_api,
|
|
)
|
|
|
|
async def create_agent(
|
|
self,
|
|
agent_config: AgentConfig,
|
|
) -> AgentCreateResponse:
|
|
agent_id = str(uuid.uuid4())
|
|
created_at = datetime.now(timezone.utc)
|
|
|
|
agent_info = AgentInfo(
|
|
**agent_config.model_dump(),
|
|
created_at=created_at,
|
|
)
|
|
|
|
# Store the agent info
|
|
await self.persistence_store.set(
|
|
key=f"agent:{agent_id}",
|
|
value=agent_info.model_dump_json(),
|
|
)
|
|
|
|
return AgentCreateResponse(
|
|
agent_id=agent_id,
|
|
)
|
|
|
|
async def _get_agent_impl(self, agent_id: str) -> ChatAgent:
|
|
agent_info_json = await self.persistence_store.get(
|
|
key=f"agent:{agent_id}",
|
|
)
|
|
if not agent_info_json:
|
|
raise ValueError(f"Could not find agent info for {agent_id}")
|
|
|
|
try:
|
|
agent_info = AgentInfo.model_validate_json(agent_info_json)
|
|
except Exception as e:
|
|
raise ValueError(f"Could not validate agent info for {agent_id}") from e
|
|
|
|
return ChatAgent(
|
|
agent_id=agent_id,
|
|
agent_config=agent_info,
|
|
inference_api=self.inference_api,
|
|
safety_api=self.safety_api,
|
|
vector_io_api=self.vector_io_api,
|
|
tool_runtime_api=self.tool_runtime_api,
|
|
tool_groups_api=self.tool_groups_api,
|
|
persistence_store=(
|
|
self.persistence_store if agent_info.enable_session_persistence else self.in_memory_store
|
|
),
|
|
created_at=agent_info.created_at,
|
|
)
|
|
|
|
async def create_agent_session(
|
|
self,
|
|
agent_id: str,
|
|
session_name: str,
|
|
) -> AgentSessionCreateResponse:
|
|
agent = await self._get_agent_impl(agent_id)
|
|
|
|
session_id = await agent.create_session(session_name)
|
|
return AgentSessionCreateResponse(
|
|
session_id=session_id,
|
|
)
|
|
|
|
async def create_agent_turn(
|
|
self,
|
|
agent_id: str,
|
|
session_id: str,
|
|
messages: list[UserMessage | ToolResponseMessage],
|
|
toolgroups: list[AgentToolGroup] | None = None,
|
|
documents: list[Document] | None = None,
|
|
stream: bool | None = False,
|
|
tool_config: ToolConfig | None = None,
|
|
) -> AsyncGenerator:
|
|
request = AgentTurnCreateRequest(
|
|
agent_id=agent_id,
|
|
session_id=session_id,
|
|
messages=messages,
|
|
stream=True,
|
|
toolgroups=toolgroups,
|
|
documents=documents,
|
|
tool_config=tool_config,
|
|
)
|
|
if stream:
|
|
return self._create_agent_turn_streaming(request)
|
|
else:
|
|
raise NotImplementedError("Non-streaming agent turns not yet implemented")
|
|
|
|
async def _create_agent_turn_streaming(
|
|
self,
|
|
request: AgentTurnCreateRequest,
|
|
) -> AsyncGenerator:
|
|
agent = await self._get_agent_impl(request.agent_id)
|
|
async for event in agent.create_and_execute_turn(request):
|
|
yield event
|
|
|
|
async def resume_agent_turn(
|
|
self,
|
|
agent_id: str,
|
|
session_id: str,
|
|
turn_id: str,
|
|
tool_responses: list[ToolResponse],
|
|
stream: bool | None = False,
|
|
) -> AsyncGenerator:
|
|
request = AgentTurnResumeRequest(
|
|
agent_id=agent_id,
|
|
session_id=session_id,
|
|
turn_id=turn_id,
|
|
tool_responses=tool_responses,
|
|
stream=stream,
|
|
)
|
|
if stream:
|
|
return self._continue_agent_turn_streaming(request)
|
|
else:
|
|
raise NotImplementedError("Non-streaming agent turns not yet implemented")
|
|
|
|
async def _continue_agent_turn_streaming(
|
|
self,
|
|
request: AgentTurnResumeRequest,
|
|
) -> AsyncGenerator:
|
|
agent = await self._get_agent_impl(request.agent_id)
|
|
async for event in agent.resume_turn(request):
|
|
yield event
|
|
|
|
async def get_agents_turn(self, agent_id: str, session_id: str, turn_id: str) -> Turn:
|
|
agent = await self._get_agent_impl(agent_id)
|
|
turn = await agent.storage.get_session_turn(session_id, turn_id)
|
|
return turn
|
|
|
|
async def get_agents_step(self, agent_id: str, session_id: str, turn_id: str, step_id: str) -> AgentStepResponse:
|
|
turn = await self.get_agents_turn(agent_id, session_id, turn_id)
|
|
for step in turn.steps:
|
|
if step.step_id == step_id:
|
|
return AgentStepResponse(step=step)
|
|
raise ValueError(f"Provided step_id {step_id} could not be found")
|
|
|
|
async def get_agents_session(
|
|
self,
|
|
agent_id: str,
|
|
session_id: str,
|
|
turn_ids: list[str] | None = None,
|
|
) -> Session:
|
|
agent = await self._get_agent_impl(agent_id)
|
|
|
|
session_info = await agent.storage.get_session_info(session_id)
|
|
if session_info is None:
|
|
raise ValueError(f"Session {session_id} not found")
|
|
turns = await agent.storage.get_session_turns(session_id)
|
|
if turn_ids:
|
|
turns = [turn for turn in turns if turn.turn_id in turn_ids]
|
|
return Session(
|
|
session_name=session_info.session_name,
|
|
session_id=session_id,
|
|
turns=turns,
|
|
started_at=session_info.started_at,
|
|
)
|
|
|
|
async def delete_agents_session(self, agent_id: str, session_id: str) -> None:
|
|
agent = await self._get_agent_impl(agent_id)
|
|
session_info = await agent.storage.get_session_info(session_id)
|
|
if session_info is None:
|
|
raise ValueError(f"Session {session_id} not found")
|
|
|
|
# Delete turns first, then the session
|
|
await agent.storage.delete_session_turns(session_id)
|
|
await agent.storage.delete_session(session_id)
|
|
|
|
async def delete_agent(self, agent_id: str) -> None:
|
|
# First get all sessions for this agent
|
|
agent = await self._get_agent_impl(agent_id)
|
|
sessions = await agent.storage.list_sessions()
|
|
|
|
# Delete all sessions
|
|
for session in sessions:
|
|
await self.delete_agents_session(agent_id, session.session_id)
|
|
|
|
# Finally delete the agent itself
|
|
await self.persistence_store.delete(f"agent:{agent_id}")
|
|
|
|
async def list_agents(self, start_index: int | None = None, limit: int | None = None) -> PaginatedResponse:
|
|
agent_keys = await self.persistence_store.keys_in_range("agent:", "agent:\xff")
|
|
agent_list: list[Agent] = []
|
|
for agent_key in agent_keys:
|
|
agent_id = agent_key.split(":")[1]
|
|
|
|
# Get the agent info using the key
|
|
agent_info_json = await self.persistence_store.get(agent_key)
|
|
if not agent_info_json:
|
|
logger.error(f"Could not find agent info for key {agent_key}")
|
|
continue
|
|
|
|
try:
|
|
agent_info = AgentInfo.model_validate_json(agent_info_json)
|
|
agent_list.append(
|
|
Agent(
|
|
agent_id=agent_id,
|
|
agent_config=agent_info,
|
|
created_at=agent_info.created_at,
|
|
)
|
|
)
|
|
except Exception as e:
|
|
logger.error(f"Error parsing agent info for {agent_id}: {e}")
|
|
continue
|
|
|
|
# Convert Agent objects to dictionaries
|
|
agent_dicts = [agent.model_dump() for agent in agent_list]
|
|
return paginate_records(agent_dicts, start_index, limit)
|
|
|
|
async def get_agent(self, agent_id: str) -> Agent:
|
|
chat_agent = await self._get_agent_impl(agent_id)
|
|
agent = Agent(
|
|
agent_id=agent_id,
|
|
agent_config=chat_agent.agent_config,
|
|
created_at=chat_agent.created_at,
|
|
)
|
|
return agent
|
|
|
|
async def list_agent_sessions(
|
|
self, agent_id: str, start_index: int | None = None, limit: int | None = None
|
|
) -> PaginatedResponse:
|
|
agent = await self._get_agent_impl(agent_id)
|
|
sessions = await agent.storage.list_sessions()
|
|
# Convert Session objects to dictionaries
|
|
session_dicts = [session.model_dump() for session in sessions]
|
|
return paginate_records(session_dicts, start_index, limit)
|
|
|
|
async def shutdown(self) -> None:
|
|
pass
|
|
|
|
# OpenAI responses
|
|
async def get_openai_response(
|
|
self,
|
|
id: str,
|
|
) -> OpenAIResponseObject:
|
|
return await self.openai_responses_impl.get_openai_response(id)
|
|
|
|
async def create_openai_response(
|
|
self,
|
|
input: str | list[OpenAIResponseInput],
|
|
model: str,
|
|
previous_response_id: str | None = None,
|
|
store: bool | None = True,
|
|
stream: bool | None = False,
|
|
temperature: float | None = None,
|
|
tools: list[OpenAIResponseInputTool] | None = None,
|
|
) -> OpenAIResponseObject:
|
|
return await self.openai_responses_impl.create_openai_response(
|
|
input, model, previous_response_id, store, stream, temperature, tools
|
|
)
|