forked from phoenix-oss/llama-stack-mirror
# What does this PR do? his PR allows users to customize the template used for chunks when inserted into the context. Additionally, this enables metadata injection into the context of an LLM for RAG. This makes a naive and crude assumption that each chunk should include the metadata, this is obviously redundant when multiple chunks are returned from the same document. In order to remove any sort of duplication of chunks, we'd have to make much more significant changes so this is a reasonable first step that unblocks users requesting this enhancement in https://github.com/meta-llama/llama-stack/issues/1767. In the future, this can be extended to support citations. List of Changes: - `llama_stack/apis/tools/rag_tool.py` - Added `chunk_template` field in `RAGQueryConfig`. - Added `field_validator` to validate the `chunk_template` field in `RAGQueryConfig`. - Ensured the `chunk_template` field includes placeholders `{index}` and `{chunk.content}`. - Updated the `query` method to use the `chunk_template` for formatting chunk text content. - `llama_stack/providers/inline/tool_runtime/rag/memory.py` - Modified the `insert` method to pass `doc.metadata` for chunk creation. - Enhanced the `query` method to format results using `chunk_template` and exclude unnecessary metadata fields like `token_count`. - `llama_stack/providers/utils/memory/vector_store.py` - Updated `make_overlapped_chunks` to include metadata serialization and token count for both content and metadata. - Added error handling for metadata serialization issues. - `pyproject.toml` - Added `pydantic.field_validator` as a recognized `classmethod` decorator in the linting configuration. - `tests/integration/tool_runtime/test_rag_tool.py` - Refactored test assertions to separate `assert_valid_chunk_response` and `assert_valid_text_response`. - Added integration tests to validate `chunk_template` functionality with and without metadata inclusion. - Included a test case to ensure `chunk_template` validation errors are raised appropriately. - `tests/unit/rag/test_vector_store.py` - Added unit tests for `make_overlapped_chunks`, verifying chunk creation with overlapping tokens and metadata integrity. - Added tests to handle metadata serialization errors, ensuring proper exception handling. - `docs/_static/llama-stack-spec.html` - Added a new `chunk_template` field of type `string` with a default template for formatting retrieved chunks in RAGQueryConfig. - Updated the `required` fields to include `chunk_template`. - `docs/_static/llama-stack-spec.yaml` - Introduced `chunk_template` field with a default value for RAGQueryConfig. - Updated the required configuration list to include `chunk_template`. - `docs/source/building_applications/rag.md` - Documented the `chunk_template` configuration, explaining how to customize metadata formatting in RAG queries. - Added examples demonstrating the usage of the `chunk_template` field in RAG tool queries. - Highlighted default values for `RAG` agent configurations. # Resolves https://github.com/meta-llama/llama-stack/issues/1767 ## Test Plan Updated both `test_vector_store.py` and `test_rag_tool.py` and tested end-to-end with a script. I also tested the quickstart to enable this and specified this metadata: ```python document = RAGDocument( document_id="document_1", content=source, mime_type="text/html", metadata={"author": "Paul Graham", "title": "How to do great work"}, ) ``` Which produced the output below:  This highlights the usefulness of the additional metadata. Notice how the metadata is redundant for different chunks of the same document. I think we can update that in a subsequent PR. # Documentation I've added a brief comment about this in the documentation to outline this to users and updated the API documentation. --------- Signed-off-by: Francisco Javier Arceo <farceo@redhat.com>
120 lines
3.9 KiB
Python
120 lines
3.9 KiB
Python
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
|
# All rights reserved.
|
|
#
|
|
# This source code is licensed under the terms described in the LICENSE file in
|
|
# the root directory of this source tree.
|
|
|
|
from enum import Enum
|
|
from typing import Annotated, Any, Literal
|
|
|
|
from pydantic import BaseModel, Field, field_validator
|
|
from typing_extensions import Protocol, runtime_checkable
|
|
|
|
from llama_stack.apis.common.content_types import URL, InterleavedContent
|
|
from llama_stack.providers.utils.telemetry.trace_protocol import trace_protocol
|
|
from llama_stack.schema_utils import json_schema_type, register_schema, webmethod
|
|
|
|
|
|
@json_schema_type
|
|
class RAGDocument(BaseModel):
|
|
"""
|
|
A document to be used for document ingestion in the RAG Tool.
|
|
|
|
:param document_id: The unique identifier for the document.
|
|
:param content: The content of the document.
|
|
:param mime_type: The MIME type of the document.
|
|
:param metadata: Additional metadata for the document.
|
|
"""
|
|
|
|
document_id: str
|
|
content: InterleavedContent | URL
|
|
mime_type: str | None = None
|
|
metadata: dict[str, Any] = Field(default_factory=dict)
|
|
|
|
|
|
@json_schema_type
|
|
class RAGQueryResult(BaseModel):
|
|
content: InterleavedContent | None = None
|
|
metadata: dict[str, Any] = Field(default_factory=dict)
|
|
|
|
|
|
@json_schema_type
|
|
class RAGQueryGenerator(Enum):
|
|
default = "default"
|
|
llm = "llm"
|
|
custom = "custom"
|
|
|
|
|
|
@json_schema_type
|
|
class DefaultRAGQueryGeneratorConfig(BaseModel):
|
|
type: Literal["default"] = "default"
|
|
separator: str = " "
|
|
|
|
|
|
@json_schema_type
|
|
class LLMRAGQueryGeneratorConfig(BaseModel):
|
|
type: Literal["llm"] = "llm"
|
|
model: str
|
|
template: str
|
|
|
|
|
|
RAGQueryGeneratorConfig = Annotated[
|
|
DefaultRAGQueryGeneratorConfig | LLMRAGQueryGeneratorConfig,
|
|
Field(discriminator="type"),
|
|
]
|
|
register_schema(RAGQueryGeneratorConfig, name="RAGQueryGeneratorConfig")
|
|
|
|
|
|
@json_schema_type
|
|
class RAGQueryConfig(BaseModel):
|
|
"""
|
|
Configuration for the RAG query generation.
|
|
|
|
:param query_generator_config: Configuration for the query generator.
|
|
:param max_tokens_in_context: Maximum number of tokens in the context.
|
|
:param max_chunks: Maximum number of chunks to retrieve.
|
|
:param chunk_template: Template for formatting each retrieved chunk in the context.
|
|
Available placeholders: {index} (1-based chunk ordinal), {chunk.content} (chunk content string), {metadata} (chunk metadata dict).
|
|
Default: "Result {index}\\nContent: {chunk.content}\\nMetadata: {metadata}\\n"
|
|
"""
|
|
|
|
# This config defines how a query is generated using the messages
|
|
# for memory bank retrieval.
|
|
query_generator_config: RAGQueryGeneratorConfig = Field(default=DefaultRAGQueryGeneratorConfig())
|
|
max_tokens_in_context: int = 4096
|
|
max_chunks: int = 5
|
|
chunk_template: str = "Result {index}\nContent: {chunk.content}\nMetadata: {metadata}\n"
|
|
|
|
@field_validator("chunk_template")
|
|
def validate_chunk_template(cls, v: str) -> str:
|
|
if "{chunk.content}" not in v:
|
|
raise ValueError("chunk_template must contain {chunk.content}")
|
|
if "{index}" not in v:
|
|
raise ValueError("chunk_template must contain {index}")
|
|
if len(v) == 0:
|
|
raise ValueError("chunk_template must not be empty")
|
|
return v
|
|
|
|
|
|
@runtime_checkable
|
|
@trace_protocol
|
|
class RAGToolRuntime(Protocol):
|
|
@webmethod(route="/tool-runtime/rag-tool/insert", method="POST")
|
|
async def insert(
|
|
self,
|
|
documents: list[RAGDocument],
|
|
vector_db_id: str,
|
|
chunk_size_in_tokens: int = 512,
|
|
) -> None:
|
|
"""Index documents so they can be used by the RAG system"""
|
|
...
|
|
|
|
@webmethod(route="/tool-runtime/rag-tool/query", method="POST")
|
|
async def query(
|
|
self,
|
|
content: InterleavedContent,
|
|
vector_db_ids: list[str],
|
|
query_config: RAGQueryConfig | None = None,
|
|
) -> RAGQueryResult:
|
|
"""Query the RAG system for context; typically invoked by the agent"""
|
|
...
|