forked from phoenix-oss/llama-stack-mirror
# What does this PR do? Adds raw completions API to vLLM ## Test Plan <details> <summary>Setup</summary> ```bash # Run vllm server conda create -n vllm python=3.12 -y conda activate vllm pip install vllm # Run llamastack conda create --name llamastack-vllm python=3.10 conda activate llamastack-vllm export INFERENCE_MODEL=meta-llama/Llama-3.2-3B-Instruct && \ pip install -e . && \ pip install --no-cache --index-url https://pypi.org/simple/ --extra-index-url https://test.pypi.org/simple/ llama-stack==0.1.0rc7 && \ llama stack build --template remote-vllm --image-type conda && \ llama stack run ./distributions/remote-vllm/run.yaml \ --port 5000 \ --env INFERENCE_MODEL=$INFERENCE_MODEL \ --env VLLM_URL=http://localhost:8000/v1 | tee -a llama-stack.log ``` </details> <details> <summary>Integration</summary> ```bash # Run conda activate llamastack-vllm export VLLM_URL=http://localhost:8000/v1 pip install pytest pytest_html pytest_asyncio aiosqlite pytest llama_stack/providers/tests/inference/test_text_inference.py -v -k vllm # Results llama_stack/providers/tests/inference/test_text_inference.py::TestInference::test_model_list[-vllm_remote] PASSED [ 11%] llama_stack/providers/tests/inference/test_text_inference.py::TestInference::test_completion[-vllm_remote] PASSED [ 22%] llama_stack/providers/tests/inference/test_text_inference.py::TestInference::test_completion_logprobs[-vllm_remote] SKIPPED [ 33%] llama_stack/providers/tests/inference/test_text_inference.py::TestInference::test_completion_structured_output[-vllm_remote] SKIPPED [ 44%] llama_stack/providers/tests/inference/test_text_inference.py::TestInference::test_chat_completion_non_streaming[-vllm_remote] PASSED [ 55%] llama_stack/providers/tests/inference/test_text_inference.py::TestInference::test_structured_output[-vllm_remote] PASSED [ 66%] llama_stack/providers/tests/inference/test_text_inference.py::TestInference::test_chat_completion_streaming[-vllm_remote] PASSED [ 77%] llama_stack/providers/tests/inference/test_text_inference.py::TestInference::test_chat_completion_with_tool_calling[-vllm_remote] PASSED [ 88%] llama_stack/providers/tests/inference/test_text_inference.py::TestInference::test_chat_completion_with_tool_calling_streaming[-vllm_remote] PASSED [100%] ====================================== 7 passed, 2 skipped, 99 deselected, 1 warning in 9.80s ====================================== ``` </details> <details> <summary>Manual</summary> ```bash # Install pip install --no-cache --index-url https://pypi.org/simple/ --extra-index-url https://test.pypi.org/simple/ llama-stack==0.1.0rc7 ``` Apply this diff ```diff diff --git a/llama_stack/distribution/server/server.py b/llama_stack/distribution/server/server.py index 8dbb193..95173e2 100644 --- a/llama_stack/distribution/server/server.py +++ b/llama_stack/distribution/server/server.py @@ -250,7 +250,7 @@ class ClientVersionMiddleware: server_version_parts = tuple( map(int, self.server_version.split(".")[:2]) ) - if client_version_parts != server_version_parts: + if False and client_version_parts != server_version_parts: async def send_version_error(send): await send( diff --git a/llama_stack/templates/remote-vllm/run.yaml b/llama_stack/templates/remote-vllm/run.yaml index 4eac4da..32eb50e 100644 --- a/llama_stack/templates/remote-vllm/run.yaml +++ b/llama_stack/templates/remote-vllm/run.yaml @@ -94,7 +94,8 @@ metadata_store: type: sqlite db_path: ${env.SQLITE_STORE_DIR:~/.llama/distributions/remote-vllm}/registry.db models: -- metadata: {} +- metadata: + llama_model: meta-llama/Llama-3.2-3B-Instruct model_id: ${env.INFERENCE_MODEL} provider_id: vllm-inference model_type: llm ``` Test 1: ```python from llama_stack_client import LlamaStackClient client = LlamaStackClient( base_url="http://localhost:5000", ) response = client.inference.completion( model_id="meta-llama/Llama-3.2-3B-Instruct", content="Hello, world client!", ) print(response) ``` Test 2 ``` from llama_stack_client import LlamaStackClient client = LlamaStackClient( base_url="http://localhost:5000", ) response = client.inference.completion( model_id="meta-llama/Llama-3.2-3B-Instruct", content="Hello, world client!", stream=True, ) for chunk in response: print(chunk.delta, end="", flush=True) ``` ``` I'm excited to introduce you to our latest project, a comprehensive guide to the best coffee shops in [City]. As a coffee connoisseur, you're in luck because we've scoured the city to bring you the top picks for the perfect cup of joe. In this guide, we'll take you on a journey through the city's most iconic coffee shops, highlighting their unique features, must-try drinks, and insider tips from the baristas themselves. From cozy cafes to trendy cafes, we've got you covered. **Top 5 Coffee Shops in [City]** 1. **The Daily Grind**: This beloved institution has been serving up expertly crafted pour-overs and lattes for over 10 years. Their expert baristas are always happy to guide you through their menu, which features a rotating selection of single-origin beans from around the world... ``` </details> ## Before submitting - [ ] This PR fixes a typo or improves the docs (you can dismiss the other checks if that's the case). - [ ] Ran pre-commit to handle lint / formatting issues. - [ ] Read the [contributor guideline](https://github.com/meta-llama/llama-stack/blob/main/CONTRIBUTING.md), Pull Request section? - [ ] Updated relevant documentation. - [ ] Wrote necessary unit or integration tests.
270 lines
9.5 KiB
Python
270 lines
9.5 KiB
Python
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
|
# All rights reserved.
|
|
#
|
|
# This source code is licensed under the terms described in the LICENSE file in
|
|
# the root directory of this source tree.
|
|
|
|
import logging
|
|
from typing import AsyncGenerator, List, Optional, Union
|
|
|
|
from llama_models.llama3.api.chat_format import ChatFormat
|
|
from llama_models.llama3.api.tokenizer import Tokenizer
|
|
from llama_models.sku_list import all_registered_models
|
|
from openai import OpenAI
|
|
|
|
from llama_stack.apis.common.content_types import InterleavedContent
|
|
from llama_stack.apis.inference import (
|
|
ChatCompletionRequest,
|
|
ChatCompletionResponse,
|
|
CompletionRequest,
|
|
CompletionResponse,
|
|
CompletionResponseStreamChunk,
|
|
EmbeddingsResponse,
|
|
Inference,
|
|
LogProbConfig,
|
|
Message,
|
|
ResponseFormat,
|
|
ResponseFormatType,
|
|
SamplingParams,
|
|
ToolChoice,
|
|
ToolDefinition,
|
|
ToolPromptFormat,
|
|
)
|
|
from llama_stack.apis.models import Model, ModelType
|
|
from llama_stack.providers.datatypes import ModelsProtocolPrivate
|
|
from llama_stack.providers.utils.inference.model_registry import (
|
|
build_model_alias,
|
|
ModelRegistryHelper,
|
|
)
|
|
from llama_stack.providers.utils.inference.openai_compat import (
|
|
convert_message_to_openai_dict,
|
|
get_sampling_options,
|
|
process_chat_completion_response,
|
|
process_chat_completion_stream_response,
|
|
process_completion_response,
|
|
process_completion_stream_response,
|
|
)
|
|
from llama_stack.providers.utils.inference.prompt_adapter import (
|
|
chat_completion_request_to_prompt,
|
|
completion_request_to_prompt,
|
|
content_has_media,
|
|
interleaved_content_as_str,
|
|
request_has_media,
|
|
)
|
|
|
|
from .config import VLLMInferenceAdapterConfig
|
|
|
|
log = logging.getLogger(__name__)
|
|
|
|
|
|
def build_model_aliases():
|
|
return [
|
|
build_model_alias(
|
|
model.huggingface_repo,
|
|
model.descriptor(),
|
|
)
|
|
for model in all_registered_models()
|
|
if model.huggingface_repo
|
|
]
|
|
|
|
|
|
class VLLMInferenceAdapter(Inference, ModelsProtocolPrivate):
|
|
def __init__(self, config: VLLMInferenceAdapterConfig) -> None:
|
|
self.register_helper = ModelRegistryHelper(build_model_aliases())
|
|
self.config = config
|
|
self.formatter = ChatFormat(Tokenizer.get_instance())
|
|
self.client = None
|
|
|
|
async def initialize(self) -> None:
|
|
log.info(f"Initializing VLLM client with base_url={self.config.url}")
|
|
self.client = OpenAI(base_url=self.config.url, api_key=self.config.api_token)
|
|
|
|
async def shutdown(self) -> None:
|
|
pass
|
|
|
|
async def unregister_model(self, model_id: str) -> None:
|
|
pass
|
|
|
|
async def completion(
|
|
self,
|
|
model_id: str,
|
|
content: InterleavedContent,
|
|
sampling_params: Optional[SamplingParams] = SamplingParams(),
|
|
response_format: Optional[ResponseFormat] = None,
|
|
stream: Optional[bool] = False,
|
|
logprobs: Optional[LogProbConfig] = None,
|
|
) -> Union[CompletionResponse, CompletionResponseStreamChunk]:
|
|
model = await self.model_store.get_model(model_id)
|
|
request = CompletionRequest(
|
|
model=model.provider_resource_id,
|
|
content=content,
|
|
sampling_params=sampling_params,
|
|
response_format=response_format,
|
|
stream=stream,
|
|
logprobs=logprobs,
|
|
)
|
|
if stream:
|
|
return self._stream_completion(request)
|
|
else:
|
|
return await self._nonstream_completion(request)
|
|
|
|
async def chat_completion(
|
|
self,
|
|
model_id: str,
|
|
messages: List[Message],
|
|
sampling_params: Optional[SamplingParams] = SamplingParams(),
|
|
response_format: Optional[ResponseFormat] = None,
|
|
tools: Optional[List[ToolDefinition]] = None,
|
|
tool_choice: Optional[ToolChoice] = ToolChoice.auto,
|
|
tool_prompt_format: Optional[ToolPromptFormat] = None,
|
|
stream: Optional[bool] = False,
|
|
logprobs: Optional[LogProbConfig] = None,
|
|
) -> AsyncGenerator:
|
|
model = await self.model_store.get_model(model_id)
|
|
request = ChatCompletionRequest(
|
|
model=model.provider_resource_id,
|
|
messages=messages,
|
|
sampling_params=sampling_params,
|
|
tools=tools or [],
|
|
tool_choice=tool_choice,
|
|
tool_prompt_format=tool_prompt_format,
|
|
stream=stream,
|
|
logprobs=logprobs,
|
|
response_format=response_format,
|
|
)
|
|
if stream:
|
|
return self._stream_chat_completion(request, self.client)
|
|
else:
|
|
return await self._nonstream_chat_completion(request, self.client)
|
|
|
|
async def _nonstream_chat_completion(
|
|
self, request: ChatCompletionRequest, client: OpenAI
|
|
) -> ChatCompletionResponse:
|
|
params = await self._get_params(request)
|
|
if "messages" in params:
|
|
r = client.chat.completions.create(**params)
|
|
else:
|
|
r = client.completions.create(**params)
|
|
return process_chat_completion_response(r, self.formatter)
|
|
|
|
async def _stream_chat_completion(
|
|
self, request: ChatCompletionRequest, client: OpenAI
|
|
) -> AsyncGenerator:
|
|
params = await self._get_params(request)
|
|
|
|
# TODO: Can we use client.completions.acreate() or maybe there is another way to directly create an async
|
|
# generator so this wrapper is not necessary?
|
|
async def _to_async_generator():
|
|
if "messages" in params:
|
|
s = client.chat.completions.create(**params)
|
|
else:
|
|
s = client.completions.create(**params)
|
|
for chunk in s:
|
|
yield chunk
|
|
|
|
stream = _to_async_generator()
|
|
async for chunk in process_chat_completion_stream_response(
|
|
stream, self.formatter
|
|
):
|
|
yield chunk
|
|
|
|
async def _nonstream_completion(
|
|
self, request: CompletionRequest
|
|
) -> CompletionResponse:
|
|
params = await self._get_params(request)
|
|
r = self.client.completions.create(**params)
|
|
return process_completion_response(r, self.formatter)
|
|
|
|
async def _stream_completion(self, request: CompletionRequest) -> AsyncGenerator:
|
|
params = await self._get_params(request)
|
|
|
|
# Wrapper for async generator similar
|
|
async def _to_async_generator():
|
|
stream = self.client.completions.create(**params)
|
|
for chunk in stream:
|
|
yield chunk
|
|
|
|
stream = _to_async_generator()
|
|
async for chunk in process_completion_stream_response(stream, self.formatter):
|
|
yield chunk
|
|
|
|
async def register_model(self, model: Model) -> Model:
|
|
model = await self.register_helper.register_model(model)
|
|
res = self.client.models.list()
|
|
available_models = [m.id for m in res]
|
|
if model.provider_resource_id not in available_models:
|
|
raise ValueError(
|
|
f"Model {model.provider_resource_id} is not being served by vLLM. "
|
|
f"Available models: {', '.join(available_models)}"
|
|
)
|
|
return model
|
|
|
|
async def _get_params(
|
|
self, request: Union[ChatCompletionRequest, CompletionRequest]
|
|
) -> dict:
|
|
options = get_sampling_options(request.sampling_params)
|
|
if "max_tokens" not in options:
|
|
options["max_tokens"] = self.config.max_tokens
|
|
|
|
input_dict = {}
|
|
media_present = request_has_media(request)
|
|
if isinstance(request, ChatCompletionRequest):
|
|
if media_present:
|
|
input_dict["messages"] = [
|
|
await convert_message_to_openai_dict(m, download=True)
|
|
for m in request.messages
|
|
]
|
|
else:
|
|
input_dict["prompt"] = await chat_completion_request_to_prompt(
|
|
request,
|
|
self.register_helper.get_llama_model(request.model),
|
|
self.formatter,
|
|
)
|
|
else:
|
|
assert (
|
|
not media_present
|
|
), "vLLM does not support media for Completion requests"
|
|
input_dict["prompt"] = await completion_request_to_prompt(
|
|
request,
|
|
self.formatter,
|
|
)
|
|
|
|
if fmt := request.response_format:
|
|
if fmt.type == ResponseFormatType.json_schema.value:
|
|
input_dict["extra_body"] = {
|
|
"guided_json": request.response_format.json_schema
|
|
}
|
|
elif fmt.type == ResponseFormatType.grammar.value:
|
|
raise NotImplementedError("Grammar response format not supported yet")
|
|
else:
|
|
raise ValueError(f"Unknown response format {fmt.type}")
|
|
|
|
return {
|
|
"model": request.model,
|
|
**input_dict,
|
|
"stream": request.stream,
|
|
**options,
|
|
}
|
|
|
|
async def embeddings(
|
|
self,
|
|
model_id: str,
|
|
contents: List[InterleavedContent],
|
|
) -> EmbeddingsResponse:
|
|
model = await self.model_store.get_model(model_id)
|
|
|
|
kwargs = {}
|
|
assert model.model_type == ModelType.embedding
|
|
assert model.metadata.get("embedding_dimensions")
|
|
kwargs["dimensions"] = model.metadata.get("embedding_dimensions")
|
|
assert all(
|
|
not content_has_media(content) for content in contents
|
|
), "VLLM does not support media for embeddings"
|
|
response = self.client.embeddings.create(
|
|
model=model.provider_resource_id,
|
|
input=[interleaved_content_as_str(content) for content in contents],
|
|
**kwargs,
|
|
)
|
|
|
|
embeddings = [data.embedding for data in response.data]
|
|
return EmbeddingsResponse(embeddings=embeddings)
|