forked from phoenix-oss/llama-stack-mirror
* API Keys passed from Client instead of distro configuration * delete distribution registry * Rename the "package" word away * Introduce a "Router" layer for providers Some providers need to be factorized and considered as thin routing layers on top of other providers. Consider two examples: - The inference API should be a routing layer over inference providers, routed using the "model" key - The memory banks API is another instance where various memory bank types will be provided by independent providers (e.g., a vector store is served by Chroma while a keyvalue memory can be served by Redis or PGVector) This commit introduces a generalized routing layer for this purpose. * update `apis_to_serve` * llama_toolchain -> llama_stack * Codemod from llama_toolchain -> llama_stack - added providers/registry - cleaned up api/ subdirectories and moved impls away - restructured api/api.py - from llama_stack.apis.<api> import foo should work now - update imports to do llama_stack.apis.<api> - update many other imports - added __init__, fixed some registry imports - updated registry imports - create_agentic_system -> create_agent - AgenticSystem -> Agent * Moved some stuff out of common/; re-generated OpenAPI spec * llama-toolchain -> llama-stack (hyphens) * add control plane API * add redis adapter + sqlite provider * move core -> distribution * Some more toolchain -> stack changes * small naming shenanigans * Removing custom tool and agent utilities and moving them client side * Move control plane to distribution server for now * Remove control plane from API list * no codeshield dependency randomly plzzzzz * Add "fire" as a dependency * add back event loggers * stack configure fixes * use brave instead of bing in the example client * add init file so it gets packaged * add init files so it gets packaged * Update MANIFEST * bug fix --------- Co-authored-by: Hardik Shah <hjshah@fb.com> Co-authored-by: Xi Yan <xiyan@meta.com> Co-authored-by: Ashwin Bharambe <ashwin@meta.com>
196 lines
5.5 KiB
Python
196 lines
5.5 KiB
Python
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
|
# All rights reserved.
|
|
#
|
|
# This source code is licensed under the terms described in the LICENSE file in
|
|
# the root directory of this source tree.
|
|
|
|
import asyncio
|
|
import json
|
|
import os
|
|
from pathlib import Path
|
|
|
|
from typing import Any, Dict, List, Optional
|
|
|
|
import fire
|
|
import httpx
|
|
|
|
from llama_stack.distribution.datatypes import RemoteProviderConfig
|
|
from termcolor import cprint
|
|
|
|
from .memory import * # noqa: F403
|
|
from .common.file_utils import data_url_from_file
|
|
|
|
|
|
async def get_client_impl(config: RemoteProviderConfig, _deps: Any) -> Memory:
|
|
return MemoryClient(config.url)
|
|
|
|
|
|
class MemoryClient(Memory):
|
|
def __init__(self, base_url: str):
|
|
self.base_url = base_url
|
|
|
|
async def initialize(self) -> None:
|
|
pass
|
|
|
|
async def shutdown(self) -> None:
|
|
pass
|
|
|
|
async def get_memory_bank(self, bank_id: str) -> Optional[MemoryBank]:
|
|
async with httpx.AsyncClient() as client:
|
|
r = await client.get(
|
|
f"{self.base_url}/memory_banks/get",
|
|
params={
|
|
"bank_id": bank_id,
|
|
},
|
|
headers={"Content-Type": "application/json"},
|
|
timeout=20,
|
|
)
|
|
r.raise_for_status()
|
|
d = r.json()
|
|
if not d:
|
|
return None
|
|
return MemoryBank(**d)
|
|
|
|
async def create_memory_bank(
|
|
self,
|
|
name: str,
|
|
config: MemoryBankConfig,
|
|
url: Optional[URL] = None,
|
|
) -> MemoryBank:
|
|
async with httpx.AsyncClient() as client:
|
|
r = await client.post(
|
|
f"{self.base_url}/memory_banks/create",
|
|
json={
|
|
"name": name,
|
|
"config": config.dict(),
|
|
"url": url,
|
|
},
|
|
headers={"Content-Type": "application/json"},
|
|
timeout=20,
|
|
)
|
|
r.raise_for_status()
|
|
d = r.json()
|
|
if not d:
|
|
return None
|
|
return MemoryBank(**d)
|
|
|
|
async def insert_documents(
|
|
self,
|
|
bank_id: str,
|
|
documents: List[MemoryBankDocument],
|
|
) -> None:
|
|
async with httpx.AsyncClient() as client:
|
|
r = await client.post(
|
|
f"{self.base_url}/memory_bank/insert",
|
|
json={
|
|
"bank_id": bank_id,
|
|
"documents": [d.dict() for d in documents],
|
|
},
|
|
headers={"Content-Type": "application/json"},
|
|
timeout=20,
|
|
)
|
|
r.raise_for_status()
|
|
|
|
async def query_documents(
|
|
self,
|
|
bank_id: str,
|
|
query: InterleavedTextMedia,
|
|
params: Optional[Dict[str, Any]] = None,
|
|
) -> QueryDocumentsResponse:
|
|
async with httpx.AsyncClient() as client:
|
|
r = await client.post(
|
|
f"{self.base_url}/memory_bank/query",
|
|
json={
|
|
"bank_id": bank_id,
|
|
"query": query,
|
|
"params": params,
|
|
},
|
|
headers={"Content-Type": "application/json"},
|
|
timeout=20,
|
|
)
|
|
r.raise_for_status()
|
|
return QueryDocumentsResponse(**r.json())
|
|
|
|
|
|
async def run_main(host: str, port: int, stream: bool):
|
|
client = MemoryClient(f"http://{host}:{port}")
|
|
|
|
# create a memory bank
|
|
bank = await client.create_memory_bank(
|
|
name="test_bank",
|
|
config=VectorMemoryBankConfig(
|
|
bank_id="test_bank",
|
|
embedding_model="dragon-roberta-query-2",
|
|
chunk_size_in_tokens=512,
|
|
overlap_size_in_tokens=64,
|
|
),
|
|
)
|
|
cprint(json.dumps(bank.dict(), indent=4), "green")
|
|
|
|
retrieved_bank = await client.get_memory_bank(bank.bank_id)
|
|
assert retrieved_bank is not None
|
|
assert retrieved_bank.config.embedding_model == "dragon-roberta-query-2"
|
|
|
|
urls = [
|
|
"memory_optimizations.rst",
|
|
"chat.rst",
|
|
"llama3.rst",
|
|
"datasets.rst",
|
|
"qat_finetune.rst",
|
|
"lora_finetune.rst",
|
|
]
|
|
documents = [
|
|
MemoryBankDocument(
|
|
document_id=f"num-{i}",
|
|
content=URL(
|
|
uri=f"https://raw.githubusercontent.com/pytorch/torchtune/main/docs/source/tutorials/{url}"
|
|
),
|
|
mime_type="text/plain",
|
|
)
|
|
for i, url in enumerate(urls)
|
|
]
|
|
|
|
this_dir = os.path.dirname(__file__)
|
|
files = [Path(this_dir).parent.parent / "CONTRIBUTING.md"]
|
|
documents += [
|
|
MemoryBankDocument(
|
|
document_id=f"num-{i}",
|
|
content=data_url_from_file(path),
|
|
)
|
|
for i, path in enumerate(files)
|
|
]
|
|
|
|
# insert some documents
|
|
await client.insert_documents(
|
|
bank_id=bank.bank_id,
|
|
documents=documents,
|
|
)
|
|
|
|
# query the documents
|
|
response = await client.query_documents(
|
|
bank_id=bank.bank_id,
|
|
query=[
|
|
"How do I use Lora?",
|
|
],
|
|
)
|
|
for chunk, score in zip(response.chunks, response.scores):
|
|
print(f"Score: {score}")
|
|
print(f"Chunk:\n========\n{chunk}\n========\n")
|
|
|
|
response = await client.query_documents(
|
|
bank_id=bank.bank_id,
|
|
query=[
|
|
"Tell me more about llama3 and torchtune",
|
|
],
|
|
)
|
|
for chunk, score in zip(response.chunks, response.scores):
|
|
print(f"Score: {score}")
|
|
print(f"Chunk:\n========\n{chunk}\n========\n")
|
|
|
|
|
|
def main(host: str, port: int, stream: bool = True):
|
|
asyncio.run(run_main(host, port, stream))
|
|
|
|
|
|
if __name__ == "__main__":
|
|
fire.Fire(main)
|