forked from phoenix-oss/llama-stack-mirror
* API Keys passed from Client instead of distro configuration * delete distribution registry * Rename the "package" word away * Introduce a "Router" layer for providers Some providers need to be factorized and considered as thin routing layers on top of other providers. Consider two examples: - The inference API should be a routing layer over inference providers, routed using the "model" key - The memory banks API is another instance where various memory bank types will be provided by independent providers (e.g., a vector store is served by Chroma while a keyvalue memory can be served by Redis or PGVector) This commit introduces a generalized routing layer for this purpose. * update `apis_to_serve` * llama_toolchain -> llama_stack * Codemod from llama_toolchain -> llama_stack - added providers/registry - cleaned up api/ subdirectories and moved impls away - restructured api/api.py - from llama_stack.apis.<api> import foo should work now - update imports to do llama_stack.apis.<api> - update many other imports - added __init__, fixed some registry imports - updated registry imports - create_agentic_system -> create_agent - AgenticSystem -> Agent * Moved some stuff out of common/; re-generated OpenAPI spec * llama-toolchain -> llama-stack (hyphens) * add control plane API * add redis adapter + sqlite provider * move core -> distribution * Some more toolchain -> stack changes * small naming shenanigans * Removing custom tool and agent utilities and moving them client side * Move control plane to distribution server for now * Remove control plane from API list * no codeshield dependency randomly plzzzzz * Add "fire" as a dependency * add back event loggers * stack configure fixes * use brave instead of bing in the example client * add init file so it gets packaged * add init files so it gets packaged * Update MANIFEST * bug fix --------- Co-authored-by: Hardik Shah <hjshah@fb.com> Co-authored-by: Xi Yan <xiyan@meta.com> Co-authored-by: Ashwin Bharambe <ashwin@meta.com>
117 lines
2.8 KiB
Bash
Executable file
117 lines
2.8 KiB
Bash
Executable file
#!/bin/bash
|
|
|
|
LLAMA_MODELS_DIR=${LLAMA_MODELS_DIR:-}
|
|
LLAMA_STACK_DIR=${LLAMA_STACK_DIR:-}
|
|
TEST_PYPI_VERSION=${TEST_PYPI_VERSION:-}
|
|
|
|
if [ "$#" -ne 4 ]; then
|
|
echo "Usage: $0 <build_name> <docker_base> <pip_dependencies>
|
|
echo "Example: $0 my-fastapi-app python:3.9-slim 'fastapi uvicorn'
|
|
exit 1
|
|
fi
|
|
|
|
build_name="$1"
|
|
image_name="llamastack-$build_name"
|
|
docker_base=$2
|
|
build_file_path=$3
|
|
pip_dependencies=$4
|
|
|
|
# Define color codes
|
|
RED='\033[0;31m'
|
|
GREEN='\033[0;32m'
|
|
NC='\033[0m' # No Color
|
|
|
|
set -euo pipefail
|
|
|
|
SCRIPT_DIR=$(dirname "$(readlink -f "$0")")
|
|
REPO_DIR=$(dirname $(dirname "$SCRIPT_DIR"))
|
|
DOCKER_BINARY=${DOCKER_BINARY:-docker}
|
|
DOCKER_OPTS=${DOCKER_OPTS:-}
|
|
|
|
TEMP_DIR=$(mktemp -d)
|
|
|
|
add_to_docker() {
|
|
local input
|
|
output_file="$TEMP_DIR/Dockerfile"
|
|
if [ -t 0 ]; then
|
|
printf '%s\n' "$1" >>"$output_file"
|
|
else
|
|
# If stdin is not a terminal, read from it (heredoc)
|
|
cat >>"$output_file"
|
|
fi
|
|
}
|
|
|
|
add_to_docker <<EOF
|
|
FROM $docker_base
|
|
WORKDIR /app
|
|
|
|
RUN apt-get update && apt-get install -y \
|
|
iputils-ping net-tools iproute2 dnsutils telnet \
|
|
curl wget telnet \
|
|
procps psmisc lsof \
|
|
traceroute \
|
|
bubblewrap \
|
|
&& rm -rf /var/lib/apt/lists/*
|
|
|
|
EOF
|
|
|
|
stack_mount="/app/llama-stack-source"
|
|
models_mount="/app/llama-models-source"
|
|
|
|
if [ -n "$LLAMA_STACK_DIR" ]; then
|
|
if [ ! -d "$LLAMA_STACK_DIR" ]; then
|
|
echo "${RED}Warning: LLAMA_STACK_DIR is set but directory does not exist: $LLAMA_STACK_DIR${NC}" >&2
|
|
exit 1
|
|
fi
|
|
add_to_docker "RUN pip install $stack_mount"
|
|
else
|
|
add_to_docker "RUN pip install llama-stack"
|
|
fi
|
|
|
|
if [ -n "$LLAMA_MODELS_DIR" ]; then
|
|
if [ ! -d "$LLAMA_MODELS_DIR" ]; then
|
|
echo "${RED}Warning: LLAMA_MODELS_DIR is set but directory does not exist: $LLAMA_MODELS_DIR${NC}" >&2
|
|
exit 1
|
|
fi
|
|
|
|
add_to_docker <<EOF
|
|
RUN pip uninstall -y llama-models
|
|
RUN pip install $models_mount
|
|
|
|
EOF
|
|
fi
|
|
|
|
if [ -n "$pip_dependencies" ]; then
|
|
add_to_docker "RUN pip install $pip_dependencies"
|
|
fi
|
|
|
|
add_to_docker <<EOF
|
|
|
|
# This would be good in production but for debugging flexibility lets not add it right now
|
|
# We need a more solid production ready entrypoint.sh anyway
|
|
#
|
|
# ENTRYPOINT ["python", "-m", "llama_stack.distribution.server.server"]
|
|
|
|
EOF
|
|
|
|
add_to_docker "ADD $build_file_path ./llamastack-build.yaml"
|
|
|
|
printf "Dockerfile created successfully in $TEMP_DIR/Dockerfile"
|
|
cat $TEMP_DIR/Dockerfile
|
|
printf "\n"
|
|
|
|
mounts=""
|
|
if [ -n "$LLAMA_STACK_DIR" ]; then
|
|
mounts="$mounts -v $(readlink -f $LLAMA_STACK_DIR):$stack_mount"
|
|
fi
|
|
if [ -n "$LLAMA_MODELS_DIR" ]; then
|
|
mounts="$mounts -v $(readlink -f $LLAMA_MODELS_DIR):$models_mount"
|
|
fi
|
|
set -x
|
|
$DOCKER_BINARY build $DOCKER_OPTS -t $image_name -f "$TEMP_DIR/Dockerfile" "$REPO_DIR" $mounts
|
|
set +x
|
|
|
|
echo "You can run it with: podman run -p 8000:8000 $image_name"
|
|
|
|
echo "Checking image builds..."
|
|
podman run -it $image_name cat llamastack-build.yaml
|