forked from phoenix-oss/llama-stack-mirror
* API Keys passed from Client instead of distro configuration * delete distribution registry * Rename the "package" word away * Introduce a "Router" layer for providers Some providers need to be factorized and considered as thin routing layers on top of other providers. Consider two examples: - The inference API should be a routing layer over inference providers, routed using the "model" key - The memory banks API is another instance where various memory bank types will be provided by independent providers (e.g., a vector store is served by Chroma while a keyvalue memory can be served by Redis or PGVector) This commit introduces a generalized routing layer for this purpose. * update `apis_to_serve` * llama_toolchain -> llama_stack * Codemod from llama_toolchain -> llama_stack - added providers/registry - cleaned up api/ subdirectories and moved impls away - restructured api/api.py - from llama_stack.apis.<api> import foo should work now - update imports to do llama_stack.apis.<api> - update many other imports - added __init__, fixed some registry imports - updated registry imports - create_agentic_system -> create_agent - AgenticSystem -> Agent * Moved some stuff out of common/; re-generated OpenAPI spec * llama-toolchain -> llama-stack (hyphens) * add control plane API * add redis adapter + sqlite provider * move core -> distribution * Some more toolchain -> stack changes * small naming shenanigans * Removing custom tool and agent utilities and moving them client side * Move control plane to distribution server for now * Remove control plane from API list * no codeshield dependency randomly plzzzzz * Add "fire" as a dependency * add back event loggers * stack configure fixes * use brave instead of bing in the example client * add init file so it gets packaged * add init files so it gets packaged * Update MANIFEST * bug fix --------- Co-authored-by: Hardik Shah <hjshah@fb.com> Co-authored-by: Xi Yan <xiyan@meta.com> Co-authored-by: Ashwin Bharambe <ashwin@meta.com>
29 lines
1.1 KiB
Python
29 lines
1.1 KiB
Python
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
|
# All rights reserved.
|
|
#
|
|
# This source code is licensed under the terms described in the LICENSE file in
|
|
# the root directory of this source tree.
|
|
|
|
from typing import Optional
|
|
|
|
from llama_models.schema_utils import json_schema_type
|
|
from pydantic import BaseModel, Field
|
|
|
|
|
|
@json_schema_type
|
|
class TGIImplConfig(BaseModel):
|
|
url: Optional[str] = Field(
|
|
default=None,
|
|
description="The URL for the local TGI endpoint (e.g., http://localhost:8080)",
|
|
)
|
|
api_token: Optional[str] = Field(
|
|
default=None,
|
|
description="The HF token for Hugging Face Inference Endpoints (will default to locally saved token if not provided)",
|
|
)
|
|
hf_endpoint_name: Optional[str] = Field(
|
|
default=None,
|
|
description="The name of the Hugging Face Inference Endpoint : can be either in the format of '{namespace}/{endpoint_name}' (namespace can be the username or organization name) or just '{endpoint_name}' if logged into the same account as the namespace",
|
|
)
|
|
|
|
def is_inference_endpoint(self) -> bool:
|
|
return self.hf_endpoint_name is not None
|