forked from phoenix-oss/llama-stack-mirror
This PR does the following: 1) adds the ability to generate embeddings in all supported inference providers. 2) Moves all the memory providers to use the inference API and improved the memory tests to setup the inference stack correctly and use the embedding models This is a merge from #589 and #598
381 lines
13 KiB
Python
381 lines
13 KiB
Python
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
|
# All rights reserved.
|
|
#
|
|
# This source code is licensed under the terms described in the LICENSE file in
|
|
# the root directory of this source tree.
|
|
|
|
import logging
|
|
from typing import AsyncGenerator
|
|
|
|
import httpx
|
|
from llama_models.datatypes import CoreModelId
|
|
|
|
from llama_models.llama3.api.chat_format import ChatFormat
|
|
from llama_models.llama3.api.datatypes import Message
|
|
from llama_models.llama3.api.tokenizer import Tokenizer
|
|
from ollama import AsyncClient
|
|
|
|
from llama_stack.providers.utils.inference.model_registry import (
|
|
build_model_alias,
|
|
build_model_alias_with_just_provider_model_id,
|
|
ModelRegistryHelper,
|
|
)
|
|
|
|
from llama_stack.apis.inference import * # noqa: F403
|
|
from llama_stack.providers.datatypes import ModelsProtocolPrivate
|
|
|
|
from llama_stack.providers.utils.inference.openai_compat import (
|
|
get_sampling_options,
|
|
OpenAICompatCompletionChoice,
|
|
OpenAICompatCompletionResponse,
|
|
process_chat_completion_response,
|
|
process_chat_completion_stream_response,
|
|
process_completion_response,
|
|
process_completion_stream_response,
|
|
)
|
|
from llama_stack.providers.utils.inference.prompt_adapter import (
|
|
chat_completion_request_to_prompt,
|
|
completion_request_to_prompt,
|
|
content_has_media,
|
|
convert_image_media_to_url,
|
|
request_has_media,
|
|
)
|
|
|
|
log = logging.getLogger(__name__)
|
|
|
|
model_aliases = [
|
|
build_model_alias(
|
|
"llama3.1:8b-instruct-fp16",
|
|
CoreModelId.llama3_1_8b_instruct.value,
|
|
),
|
|
build_model_alias_with_just_provider_model_id(
|
|
"llama3.1:8b",
|
|
CoreModelId.llama3_1_8b_instruct.value,
|
|
),
|
|
build_model_alias(
|
|
"llama3.1:70b-instruct-fp16",
|
|
CoreModelId.llama3_1_70b_instruct.value,
|
|
),
|
|
build_model_alias_with_just_provider_model_id(
|
|
"llama3.1:70b",
|
|
CoreModelId.llama3_1_70b_instruct.value,
|
|
),
|
|
build_model_alias(
|
|
"llama3.1:405b-instruct-fp16",
|
|
CoreModelId.llama3_1_405b_instruct.value,
|
|
),
|
|
build_model_alias_with_just_provider_model_id(
|
|
"llama3.1:405b",
|
|
CoreModelId.llama3_1_405b_instruct.value,
|
|
),
|
|
build_model_alias(
|
|
"llama3.2:1b-instruct-fp16",
|
|
CoreModelId.llama3_2_1b_instruct.value,
|
|
),
|
|
build_model_alias_with_just_provider_model_id(
|
|
"llama3.2:1b",
|
|
CoreModelId.llama3_2_1b_instruct.value,
|
|
),
|
|
build_model_alias(
|
|
"llama3.2:3b-instruct-fp16",
|
|
CoreModelId.llama3_2_3b_instruct.value,
|
|
),
|
|
build_model_alias_with_just_provider_model_id(
|
|
"llama3.2:3b",
|
|
CoreModelId.llama3_2_3b_instruct.value,
|
|
),
|
|
build_model_alias(
|
|
"llama3.2-vision:11b-instruct-fp16",
|
|
CoreModelId.llama3_2_11b_vision_instruct.value,
|
|
),
|
|
build_model_alias_with_just_provider_model_id(
|
|
"llama3.2-vision",
|
|
CoreModelId.llama3_2_11b_vision_instruct.value,
|
|
),
|
|
build_model_alias(
|
|
"llama3.2-vision:90b-instruct-fp16",
|
|
CoreModelId.llama3_2_90b_vision_instruct.value,
|
|
),
|
|
build_model_alias_with_just_provider_model_id(
|
|
"llama3.2-vision:90b",
|
|
CoreModelId.llama3_2_90b_vision_instruct.value,
|
|
),
|
|
# The Llama Guard models don't have their full fp16 versions
|
|
# so we are going to alias their default version to the canonical SKU
|
|
build_model_alias(
|
|
"llama-guard3:8b",
|
|
CoreModelId.llama_guard_3_8b.value,
|
|
),
|
|
build_model_alias(
|
|
"llama-guard3:1b",
|
|
CoreModelId.llama_guard_3_1b.value,
|
|
),
|
|
]
|
|
|
|
|
|
class OllamaInferenceAdapter(Inference, ModelsProtocolPrivate):
|
|
def __init__(self, url: str) -> None:
|
|
self.register_helper = ModelRegistryHelper(model_aliases)
|
|
self.url = url
|
|
self.formatter = ChatFormat(Tokenizer.get_instance())
|
|
|
|
@property
|
|
def client(self) -> AsyncClient:
|
|
return AsyncClient(host=self.url)
|
|
|
|
async def initialize(self) -> None:
|
|
log.info(f"checking connectivity to Ollama at `{self.url}`...")
|
|
try:
|
|
await self.client.ps()
|
|
except httpx.ConnectError as e:
|
|
raise RuntimeError(
|
|
"Ollama Server is not running, start it using `ollama serve` in a separate terminal"
|
|
) from e
|
|
|
|
async def shutdown(self) -> None:
|
|
pass
|
|
|
|
async def unregister_model(self, model_id: str) -> None:
|
|
pass
|
|
|
|
async def completion(
|
|
self,
|
|
model_id: str,
|
|
content: InterleavedTextMedia,
|
|
sampling_params: Optional[SamplingParams] = SamplingParams(),
|
|
response_format: Optional[ResponseFormat] = None,
|
|
stream: Optional[bool] = False,
|
|
logprobs: Optional[LogProbConfig] = None,
|
|
) -> AsyncGenerator:
|
|
model = await self.model_store.get_model(model_id)
|
|
request = CompletionRequest(
|
|
model=model.provider_resource_id,
|
|
content=content,
|
|
sampling_params=sampling_params,
|
|
stream=stream,
|
|
logprobs=logprobs,
|
|
)
|
|
if stream:
|
|
return self._stream_completion(request)
|
|
else:
|
|
return await self._nonstream_completion(request)
|
|
|
|
async def _stream_completion(self, request: CompletionRequest) -> AsyncGenerator:
|
|
params = await self._get_params(request)
|
|
|
|
async def _generate_and_convert_to_openai_compat():
|
|
s = await self.client.generate(**params)
|
|
async for chunk in s:
|
|
choice = OpenAICompatCompletionChoice(
|
|
finish_reason=chunk["done_reason"] if chunk["done"] else None,
|
|
text=chunk["response"],
|
|
)
|
|
yield OpenAICompatCompletionResponse(
|
|
choices=[choice],
|
|
)
|
|
|
|
stream = _generate_and_convert_to_openai_compat()
|
|
async for chunk in process_completion_stream_response(stream, self.formatter):
|
|
yield chunk
|
|
|
|
async def _nonstream_completion(self, request: CompletionRequest) -> AsyncGenerator:
|
|
params = await self._get_params(request)
|
|
r = await self.client.generate(**params)
|
|
|
|
choice = OpenAICompatCompletionChoice(
|
|
finish_reason=r["done_reason"] if r["done"] else None,
|
|
text=r["response"],
|
|
)
|
|
response = OpenAICompatCompletionResponse(
|
|
choices=[choice],
|
|
)
|
|
|
|
return process_completion_response(response, self.formatter)
|
|
|
|
async def chat_completion(
|
|
self,
|
|
model_id: str,
|
|
messages: List[Message],
|
|
sampling_params: Optional[SamplingParams] = SamplingParams(),
|
|
response_format: Optional[ResponseFormat] = None,
|
|
tools: Optional[List[ToolDefinition]] = None,
|
|
tool_choice: Optional[ToolChoice] = ToolChoice.auto,
|
|
tool_prompt_format: Optional[ToolPromptFormat] = ToolPromptFormat.json,
|
|
stream: Optional[bool] = False,
|
|
logprobs: Optional[LogProbConfig] = None,
|
|
) -> AsyncGenerator:
|
|
model = await self.model_store.get_model(model_id)
|
|
request = ChatCompletionRequest(
|
|
model=model.provider_resource_id,
|
|
messages=messages,
|
|
sampling_params=sampling_params,
|
|
tools=tools or [],
|
|
tool_choice=tool_choice,
|
|
tool_prompt_format=tool_prompt_format,
|
|
stream=stream,
|
|
logprobs=logprobs,
|
|
)
|
|
if stream:
|
|
return self._stream_chat_completion(request)
|
|
else:
|
|
return await self._nonstream_chat_completion(request)
|
|
|
|
async def _get_params(
|
|
self, request: Union[ChatCompletionRequest, CompletionRequest]
|
|
) -> dict:
|
|
sampling_options = get_sampling_options(request.sampling_params)
|
|
# This is needed since the Ollama API expects num_predict to be set
|
|
# for early truncation instead of max_tokens.
|
|
if sampling_options.get("max_tokens") is not None:
|
|
sampling_options["num_predict"] = sampling_options["max_tokens"]
|
|
|
|
input_dict = {}
|
|
media_present = request_has_media(request)
|
|
if isinstance(request, ChatCompletionRequest):
|
|
if media_present:
|
|
contents = [
|
|
await convert_message_to_dict_for_ollama(m)
|
|
for m in request.messages
|
|
]
|
|
# flatten the list of lists
|
|
input_dict["messages"] = [
|
|
item for sublist in contents for item in sublist
|
|
]
|
|
else:
|
|
input_dict["raw"] = True
|
|
input_dict["prompt"] = chat_completion_request_to_prompt(
|
|
request,
|
|
self.register_helper.get_llama_model(request.model),
|
|
self.formatter,
|
|
)
|
|
else:
|
|
assert (
|
|
not media_present
|
|
), "Ollama does not support media for Completion requests"
|
|
input_dict["prompt"] = completion_request_to_prompt(request, self.formatter)
|
|
input_dict["raw"] = True
|
|
|
|
return {
|
|
"model": request.model,
|
|
**input_dict,
|
|
"options": sampling_options,
|
|
"stream": request.stream,
|
|
}
|
|
|
|
async def _nonstream_chat_completion(
|
|
self, request: ChatCompletionRequest
|
|
) -> ChatCompletionResponse:
|
|
params = await self._get_params(request)
|
|
if "messages" in params:
|
|
r = await self.client.chat(**params)
|
|
else:
|
|
r = await self.client.generate(**params)
|
|
|
|
if "message" in r:
|
|
choice = OpenAICompatCompletionChoice(
|
|
finish_reason=r["done_reason"] if r["done"] else None,
|
|
text=r["message"]["content"],
|
|
)
|
|
else:
|
|
choice = OpenAICompatCompletionChoice(
|
|
finish_reason=r["done_reason"] if r["done"] else None,
|
|
text=r["response"],
|
|
)
|
|
response = OpenAICompatCompletionResponse(
|
|
choices=[choice],
|
|
)
|
|
return process_chat_completion_response(response, self.formatter)
|
|
|
|
async def _stream_chat_completion(
|
|
self, request: ChatCompletionRequest
|
|
) -> AsyncGenerator:
|
|
params = await self._get_params(request)
|
|
|
|
async def _generate_and_convert_to_openai_compat():
|
|
if "messages" in params:
|
|
s = await self.client.chat(**params)
|
|
else:
|
|
s = await self.client.generate(**params)
|
|
async for chunk in s:
|
|
if "message" in chunk:
|
|
choice = OpenAICompatCompletionChoice(
|
|
finish_reason=chunk["done_reason"] if chunk["done"] else None,
|
|
text=chunk["message"]["content"],
|
|
)
|
|
else:
|
|
choice = OpenAICompatCompletionChoice(
|
|
finish_reason=chunk["done_reason"] if chunk["done"] else None,
|
|
text=chunk["response"],
|
|
)
|
|
yield OpenAICompatCompletionResponse(
|
|
choices=[choice],
|
|
)
|
|
|
|
stream = _generate_and_convert_to_openai_compat()
|
|
async for chunk in process_chat_completion_stream_response(
|
|
stream, self.formatter
|
|
):
|
|
yield chunk
|
|
|
|
async def embeddings(
|
|
self,
|
|
model_id: str,
|
|
contents: List[InterleavedTextMedia],
|
|
) -> EmbeddingsResponse:
|
|
model = await self.model_store.get_model(model_id)
|
|
|
|
assert all(
|
|
not content_has_media(content) for content in contents
|
|
), "Ollama does not support media for embeddings"
|
|
response = await self.client.embed(
|
|
model=model.provider_resource_id,
|
|
input=[interleaved_text_media_as_str(content) for content in contents],
|
|
)
|
|
embeddings = response["embeddings"]
|
|
|
|
return EmbeddingsResponse(embeddings=embeddings)
|
|
|
|
async def register_model(self, model: Model) -> Model:
|
|
# ollama does not have embedding models running. Check if the model is in list of available models.
|
|
if model.model_type == ModelType.embedding_model:
|
|
response = await self.client.list()
|
|
available_models = [m["model"] for m in response["models"]]
|
|
if model.provider_resource_id not in available_models:
|
|
raise ValueError(
|
|
f"Model '{model.provider_resource_id}' is not available in Ollama. "
|
|
f"Available models: {', '.join(available_models)}"
|
|
)
|
|
return model
|
|
model = await self.register_helper.register_model(model)
|
|
models = await self.client.ps()
|
|
available_models = [m["model"] for m in models["models"]]
|
|
if model.provider_resource_id not in available_models:
|
|
raise ValueError(
|
|
f"Model '{model.provider_resource_id}' is not available in Ollama. "
|
|
f"Available models: {', '.join(available_models)}"
|
|
)
|
|
|
|
return model
|
|
|
|
|
|
async def convert_message_to_dict_for_ollama(message: Message) -> List[dict]:
|
|
async def _convert_content(content) -> dict:
|
|
if isinstance(content, ImageMedia):
|
|
return {
|
|
"role": message.role,
|
|
"images": [
|
|
await convert_image_media_to_url(
|
|
content, download=True, include_format=False
|
|
)
|
|
],
|
|
}
|
|
else:
|
|
return {
|
|
"role": message.role,
|
|
"content": content,
|
|
}
|
|
|
|
if isinstance(message.content, list):
|
|
return [await _convert_content(c) for c in message.content]
|
|
else:
|
|
return [await _convert_content(message.content)]
|