llama-stack/llama_stack/providers/remote/memory/chroma/chroma.py
Dinesh Yeduguru 96e158eaac
Make embedding generation go through inference (#606)
This PR does the following:
1) adds the ability to generate embeddings in all supported inference
providers.
2) Moves all the memory providers to use the inference API and improved
the memory tests to setup the inference stack correctly and use the
embedding models

This is a merge from #589 and #598
2024-12-12 11:47:50 -08:00

175 lines
5.8 KiB
Python

# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
import asyncio
import json
import logging
from typing import List
from urllib.parse import urlparse
import chromadb
from numpy.typing import NDArray
from llama_stack.apis.memory import * # noqa: F403
from llama_stack.providers.datatypes import Api, MemoryBanksProtocolPrivate
from llama_stack.providers.inline.memory.chroma import ChromaInlineImplConfig
from llama_stack.providers.utils.memory.vector_store import (
BankWithIndex,
EmbeddingIndex,
)
from .config import ChromaRemoteImplConfig
log = logging.getLogger(__name__)
ChromaClientType = Union[chromadb.AsyncHttpClient, chromadb.PersistentClient]
# this is a helper to allow us to use async and non-async chroma clients interchangeably
async def maybe_await(result):
if asyncio.iscoroutine(result):
return await result
return result
class ChromaIndex(EmbeddingIndex):
def __init__(self, client: ChromaClientType, collection):
self.client = client
self.collection = collection
async def add_chunks(self, chunks: List[Chunk], embeddings: NDArray):
assert len(chunks) == len(
embeddings
), f"Chunk length {len(chunks)} does not match embedding length {len(embeddings)}"
await maybe_await(
self.collection.add(
documents=[chunk.model_dump_json() for chunk in chunks],
embeddings=embeddings,
ids=[f"{c.document_id}:chunk-{i}" for i, c in enumerate(chunks)],
)
)
async def query(
self, embedding: NDArray, k: int, score_threshold: float
) -> QueryDocumentsResponse:
results = await maybe_await(
self.collection.query(
query_embeddings=[embedding.tolist()],
n_results=k,
include=["documents", "distances"],
)
)
distances = results["distances"][0]
documents = results["documents"][0]
chunks = []
scores = []
for dist, doc in zip(distances, documents):
try:
doc = json.loads(doc)
chunk = Chunk(**doc)
except Exception:
log.exception(f"Failed to parse document: {doc}")
continue
chunks.append(chunk)
scores.append(1.0 / float(dist))
return QueryDocumentsResponse(chunks=chunks, scores=scores)
async def delete(self):
await maybe_await(self.client.delete_collection(self.collection.name))
class ChromaMemoryAdapter(Memory, MemoryBanksProtocolPrivate):
def __init__(
self,
config: Union[ChromaRemoteImplConfig, ChromaInlineImplConfig],
inference_api: Api.inference,
) -> None:
log.info(f"Initializing ChromaMemoryAdapter with url: {config}")
self.config = config
self.inference_api = inference_api
self.client = None
self.cache = {}
async def initialize(self) -> None:
if isinstance(self.config, ChromaRemoteImplConfig):
log.info(f"Connecting to Chroma server at: {self.config.url}")
url = self.config.url.rstrip("/")
parsed = urlparse(url)
if parsed.path and parsed.path != "/":
raise ValueError("URL should not contain a path")
self.client = await chromadb.AsyncHttpClient(
host=parsed.hostname, port=parsed.port
)
else:
log.info(f"Connecting to Chroma local db at: {self.config.db_path}")
self.client = chromadb.PersistentClient(path=self.config.db_path)
async def shutdown(self) -> None:
pass
async def register_memory_bank(
self,
memory_bank: MemoryBank,
) -> None:
assert (
memory_bank.memory_bank_type == MemoryBankType.vector.value
), f"Only vector banks are supported {memory_bank.memory_bank_type}"
collection = await maybe_await(
self.client.get_or_create_collection(
name=memory_bank.identifier,
metadata={"bank": memory_bank.model_dump_json()},
)
)
self.cache[memory_bank.identifier] = BankWithIndex(
memory_bank, ChromaIndex(self.client, collection), self.inference_api
)
async def unregister_memory_bank(self, memory_bank_id: str) -> None:
await self.cache[memory_bank_id].index.delete()
del self.cache[memory_bank_id]
async def insert_documents(
self,
bank_id: str,
documents: List[MemoryBankDocument],
ttl_seconds: Optional[int] = None,
) -> None:
index = await self._get_and_cache_bank_index(bank_id)
await index.insert_documents(documents)
async def query_documents(
self,
bank_id: str,
query: InterleavedTextMedia,
params: Optional[Dict[str, Any]] = None,
) -> QueryDocumentsResponse:
index = await self._get_and_cache_bank_index(bank_id)
return await index.query_documents(query, params)
async def _get_and_cache_bank_index(self, bank_id: str) -> BankWithIndex:
if bank_id in self.cache:
return self.cache[bank_id]
bank = await self.memory_bank_store.get_memory_bank(bank_id)
if not bank:
raise ValueError(f"Bank {bank_id} not found in Llama Stack")
collection = await maybe_await(self.client.get_collection(bank_id))
if not collection:
raise ValueError(f"Bank {bank_id} not found in Chroma")
index = BankWithIndex(
bank, ChromaIndex(self.client, collection), self.inference_api
)
self.cache[bank_id] = index
return index