llama-stack/tests/integration/scoring/test_scoring.py
Xi Yan 98811cc034
fix: clean up test imports (#1600)
# What does this PR do?
- Clean up dead SDK code in
https://github.com/meta-llama/llama-stack-client-python/pull/198
- Regen for local cache key issue

[//]: # (If resolving an issue, uncomment and update the line below)
[//]: # (Closes #[issue-number])

## Test Plan
```
pytest -v -s --nbval-lax ./docs/getting_started.ipynb

LLAMA_STACK_CONFIG=fireworks pytest -v tests/integration/ --text-model meta-llama/Llama-3.3-70B-Instruct
```

- CI:
1382351211
<img width="1658" alt="image"
src="https://github.com/user-attachments/assets/1a2de383-35a2-47a0-8d80-d666d4970c34"
/>


[//]: # (## Documentation)
2025-03-13 11:01:52 -07:00

235 lines
7.2 KiB
Python

# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
import pytest
from ..datasetio.test_datasetio import register_dataset
@pytest.fixture
def rag_dataset_for_test(llama_stack_client):
dataset_id = "test_dataset"
register_dataset(llama_stack_client, for_rag=True, dataset_id=dataset_id)
yield # This is where the test function will run
# Teardown - this always runs, even if the test fails
try:
llama_stack_client.datasets.unregister(dataset_id)
except Exception as e:
print(f"Warning: Failed to unregister test_dataset: {e}")
@pytest.fixture
def sample_judge_prompt_template():
return "Output a number response in the following format: Score: <number>, where <number> is the number between 0 and 9."
@pytest.fixture
def sample_scoring_fn_id():
return "llm-as-judge-test-prompt"
def register_scoring_function(
llama_stack_client,
provider_id,
scoring_fn_id,
judge_model_id,
judge_prompt_template,
):
llama_stack_client.scoring_functions.register(
scoring_fn_id=scoring_fn_id,
provider_id=provider_id,
description="LLM as judge scoring function with test prompt",
return_type={
"type": "string",
},
params={
"type": "llm_as_judge",
"judge_model": judge_model_id,
"prompt_template": judge_prompt_template,
},
)
def test_scoring_functions_list(llama_stack_client):
response = llama_stack_client.scoring_functions.list()
assert isinstance(response, list)
assert len(response) > 0
def test_scoring_functions_register(
llama_stack_client,
sample_scoring_fn_id,
judge_model_id,
sample_judge_prompt_template,
):
llm_as_judge_provider = [
x
for x in llama_stack_client.providers.list()
if x.api == "scoring" and x.provider_type == "inline::llm-as-judge"
]
if len(llm_as_judge_provider) == 0:
pytest.skip("No llm-as-judge provider found, cannot test registeration")
llm_as_judge_provider_id = llm_as_judge_provider[0].provider_id
register_scoring_function(
llama_stack_client,
llm_as_judge_provider_id,
sample_scoring_fn_id,
judge_model_id,
sample_judge_prompt_template,
)
list_response = llama_stack_client.scoring_functions.list()
assert isinstance(list_response, list)
assert len(list_response) > 0
assert any(x.identifier == sample_scoring_fn_id for x in list_response)
# TODO: add unregister api for scoring functions
def test_scoring_score(llama_stack_client, rag_dataset_for_test):
# scoring individual rows
rows = llama_stack_client.datasetio.get_rows_paginated(
dataset_id="test_dataset",
rows_in_page=3,
)
assert len(rows.rows) == 3
scoring_fns_list = llama_stack_client.scoring_functions.list()
scoring_functions = {
scoring_fns_list[0].identifier: None,
}
response = llama_stack_client.scoring.score(
input_rows=rows.rows,
scoring_functions=scoring_functions,
)
assert len(response.results) == len(scoring_functions)
for x in scoring_functions:
assert x in response.results
assert len(response.results[x].score_rows) == len(rows.rows)
# score batch
response = llama_stack_client.scoring.score_batch(
dataset_id="test_dataset",
scoring_functions=scoring_functions,
save_results_dataset=False,
)
assert len(response.results) == len(scoring_functions)
for x in scoring_functions:
assert x in response.results
assert len(response.results[x].score_rows) == 5
def test_scoring_score_with_params_llm_as_judge(
llama_stack_client, sample_judge_prompt_template, judge_model_id, rag_dataset_for_test
):
# scoring individual rows
rows = llama_stack_client.datasetio.get_rows_paginated(
dataset_id="test_dataset",
rows_in_page=3,
)
assert len(rows.rows) == 3
scoring_functions = {
"llm-as-judge::base": dict(
type="llm_as_judge",
judge_model=judge_model_id,
prompt_template=sample_judge_prompt_template,
judge_score_regexes=[r"Score: (\d+)"],
aggregation_functions=[
"categorical_count",
],
)
}
response = llama_stack_client.scoring.score(
input_rows=rows.rows,
scoring_functions=scoring_functions,
)
assert len(response.results) == len(scoring_functions)
for x in scoring_functions:
assert x in response.results
assert len(response.results[x].score_rows) == len(rows.rows)
# score batch
response = llama_stack_client.scoring.score_batch(
dataset_id="test_dataset",
scoring_functions=scoring_functions,
save_results_dataset=False,
)
assert len(response.results) == len(scoring_functions)
for x in scoring_functions:
assert x in response.results
assert len(response.results[x].score_rows) == 5
@pytest.mark.parametrize(
"provider_id",
[
"basic",
"llm-as-judge",
"braintrust",
],
)
def test_scoring_score_with_aggregation_functions(
llama_stack_client, sample_judge_prompt_template, judge_model_id, provider_id, rag_dataset_for_test
):
rows = llama_stack_client.datasetio.get_rows_paginated(
dataset_id="test_dataset",
rows_in_page=3,
)
assert len(rows.rows) == 3
scoring_fns_list = [x for x in llama_stack_client.scoring_functions.list() if x.provider_id == provider_id]
if len(scoring_fns_list) == 0:
pytest.skip(f"No scoring functions found for provider {provider_id}, skipping")
scoring_functions = {}
aggr_fns = [
"accuracy",
"median",
"categorical_count",
"average",
]
scoring_fn = scoring_fns_list[0]
if scoring_fn.provider_id == "llm-as-judge":
aggr_fns = ["categorical_count"]
scoring_functions[scoring_fn.identifier] = dict(
type="llm_as_judge",
judge_model=judge_model_id,
prompt_template=sample_judge_prompt_template,
judge_score_regexes=[r"Score: (\d+)"],
aggregation_functions=aggr_fns,
)
elif scoring_fn.provider_id == "basic" or scoring_fn.provider_id == "braintrust":
if "regex_parser" in scoring_fn.identifier:
scoring_functions[scoring_fn.identifier] = dict(
type="regex_parser",
parsing_regexes=[r"Score: (\d+)"],
aggregation_functions=aggr_fns,
)
else:
scoring_functions[scoring_fn.identifier] = dict(
type="basic",
aggregation_functions=aggr_fns,
)
else:
scoring_functions[scoring_fn.identifier] = None
response = llama_stack_client.scoring.score(
input_rows=rows.rows,
scoring_functions=scoring_functions,
)
assert len(response.results) == len(scoring_functions)
for x in scoring_functions:
assert x in response.results
assert len(response.results[x].score_rows) == len(rows.rows)
assert len(response.results[x].aggregated_results) == len(aggr_fns)