llama-stack/llama_stack/providers/inline/meta_reference/datasetio/datasetio.py
2024-11-06 14:54:05 -08:00

158 lines
5 KiB
Python

# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
import io
from typing import List, Optional
import pandas
from llama_models.llama3.api.datatypes import * # noqa: F403
from llama_stack.apis.datasetio import * # noqa: F403
import base64
from abc import ABC, abstractmethod
from dataclasses import dataclass
from urllib.parse import unquote
from llama_stack.providers.datatypes import DatasetsProtocolPrivate
from llama_stack.providers.utils.memory.vector_store import parse_data_url
from .config import MetaReferenceDatasetIOConfig
class BaseDataset(ABC):
def __init__(self, *args, **kwargs) -> None:
super().__init__(*args, **kwargs)
@abstractmethod
def __len__(self) -> int:
raise NotImplementedError()
@abstractmethod
def __getitem__(self, idx):
raise NotImplementedError()
@abstractmethod
def load(self):
raise NotImplementedError()
@dataclass
class DatasetInfo:
dataset_def: DatasetDef
dataset_impl: BaseDataset
class PandasDataframeDataset(BaseDataset):
def __init__(self, dataset_def: DatasetDef, *args, **kwargs) -> None:
super().__init__(*args, **kwargs)
self.dataset_def = dataset_def
self.df = None
def __len__(self) -> int:
assert self.df is not None, "Dataset not loaded. Please call .load() first"
return len(self.df)
def __getitem__(self, idx):
assert self.df is not None, "Dataset not loaded. Please call .load() first"
if isinstance(idx, slice):
return self.df.iloc[idx].to_dict(orient="records")
else:
return self.df.iloc[idx].to_dict()
def _validate_dataset_schema(self, df) -> pandas.DataFrame:
# note that we will drop any columns in dataset that are not in the schema
df = df[self.dataset_def.dataset_schema.keys()]
# check all columns in dataset schema are present
assert len(df.columns) == len(self.dataset_def.dataset_schema)
# TODO: type checking against column types in dataset schema
return df
def load(self) -> None:
if self.df is not None:
return
# TODO: more robust support w/ data url
if self.dataset_def.url.uri.endswith(".csv"):
df = pandas.read_csv(self.dataset_def.url.uri)
elif self.dataset_def.url.uri.endswith(".xlsx"):
df = pandas.read_excel(self.dataset_def.url.uri)
elif self.dataset_def.url.uri.startswith("data:"):
parts = parse_data_url(self.dataset_def.url.uri)
data = parts["data"]
if parts["is_base64"]:
data = base64.b64decode(data)
else:
data = unquote(data)
encoding = parts["encoding"] or "utf-8"
data = data.encode(encoding)
mime_type = parts["mimetype"]
mime_category = mime_type.split("/")[0]
data_bytes = io.BytesIO(data)
if mime_category == "text":
df = pandas.read_csv(data_bytes)
else:
df = pandas.read_excel(data_bytes)
else:
raise ValueError(f"Unsupported file type: {self.dataset_def.url}")
self.df = self._validate_dataset_schema(df)
class MetaReferenceDatasetIOImpl(DatasetIO, DatasetsProtocolPrivate):
def __init__(self, config: MetaReferenceDatasetIOConfig) -> None:
self.config = config
# local registry for keeping track of datasets within the provider
self.dataset_infos = {}
async def initialize(self) -> None: ...
async def shutdown(self) -> None: ...
async def register_dataset(
self,
dataset_def: DatasetDef,
) -> None:
dataset_impl = PandasDataframeDataset(dataset_def)
self.dataset_infos[dataset_def.identifier] = DatasetInfo(
dataset_def=dataset_def,
dataset_impl=dataset_impl,
)
async def list_datasets(self) -> List[DatasetDef]:
return [i.dataset_def for i in self.dataset_infos.values()]
async def get_rows_paginated(
self,
dataset_id: str,
rows_in_page: int,
page_token: Optional[str] = None,
filter_condition: Optional[str] = None,
) -> PaginatedRowsResult:
dataset_info = self.dataset_infos.get(dataset_id)
dataset_info.dataset_impl.load()
if page_token and not page_token.isnumeric():
raise ValueError("Invalid page_token")
if page_token is None or len(page_token) == 0:
next_page_token = 0
else:
next_page_token = int(page_token)
start = next_page_token
if rows_in_page == -1:
end = len(dataset_info.dataset_impl)
else:
end = min(start + rows_in_page, len(dataset_info.dataset_impl))
rows = dataset_info.dataset_impl[start:end]
return PaginatedRowsResult(
rows=rows,
total_count=len(rows),
next_page_token=str(end),
)