forked from phoenix-oss/llama-stack-mirror
212 lines
7.5 KiB
Python
212 lines
7.5 KiB
Python
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
|
# All rights reserved.
|
|
#
|
|
# This source code is licensed under the terms described in the LICENSE file in
|
|
# the root directory of this source tree.
|
|
|
|
from typing import AsyncGenerator
|
|
|
|
from fireworks.client import Fireworks
|
|
|
|
from llama_models.llama3.api.chat_format import ChatFormat
|
|
|
|
from llama_models.llama3.api.datatypes import Message
|
|
from llama_models.llama3.api.tokenizer import Tokenizer
|
|
|
|
from llama_stack.apis.inference import * # noqa: F403
|
|
|
|
from llama_stack.providers.utils.inference.model_registry import ModelRegistryHelper
|
|
from llama_stack.providers.utils.inference.openai_compat import (
|
|
get_sampling_options,
|
|
process_chat_completion_response,
|
|
process_chat_completion_stream_response,
|
|
process_completion_response,
|
|
process_completion_stream_response,
|
|
)
|
|
from llama_stack.providers.utils.inference.prompt_adapter import (
|
|
chat_completion_request_to_prompt,
|
|
completion_request_to_prompt,
|
|
convert_message_to_dict,
|
|
request_has_media,
|
|
)
|
|
|
|
from .config import FireworksImplConfig
|
|
|
|
|
|
FIREWORKS_SUPPORTED_MODELS = {
|
|
"Llama3.1-8B-Instruct": "fireworks/llama-v3p1-8b-instruct",
|
|
"Llama3.1-70B-Instruct": "fireworks/llama-v3p1-70b-instruct",
|
|
"Llama3.1-405B-Instruct": "fireworks/llama-v3p1-405b-instruct",
|
|
"Llama3.2-1B-Instruct": "fireworks/llama-v3p2-1b-instruct",
|
|
"Llama3.2-3B-Instruct": "fireworks/llama-v3p2-3b-instruct",
|
|
"Llama3.2-11B-Vision-Instruct": "fireworks/llama-v3p2-11b-vision-instruct",
|
|
"Llama3.2-90B-Vision-Instruct": "fireworks/llama-v3p2-90b-vision-instruct",
|
|
}
|
|
|
|
|
|
class FireworksInferenceAdapter(ModelRegistryHelper, Inference):
|
|
def __init__(self, config: FireworksImplConfig) -> None:
|
|
ModelRegistryHelper.__init__(
|
|
self, stack_to_provider_models_map=FIREWORKS_SUPPORTED_MODELS
|
|
)
|
|
self.config = config
|
|
self.formatter = ChatFormat(Tokenizer.get_instance())
|
|
|
|
async def initialize(self) -> None:
|
|
return
|
|
|
|
async def shutdown(self) -> None:
|
|
pass
|
|
|
|
async def completion(
|
|
self,
|
|
model: str,
|
|
content: InterleavedTextMedia,
|
|
sampling_params: Optional[SamplingParams] = SamplingParams(),
|
|
response_format: Optional[ResponseFormat] = None,
|
|
stream: Optional[bool] = False,
|
|
logprobs: Optional[LogProbConfig] = None,
|
|
) -> AsyncGenerator:
|
|
request = CompletionRequest(
|
|
model=model,
|
|
content=content,
|
|
sampling_params=sampling_params,
|
|
response_format=response_format,
|
|
stream=stream,
|
|
logprobs=logprobs,
|
|
)
|
|
client = Fireworks(api_key=self.config.api_key)
|
|
if stream:
|
|
return self._stream_completion(request, client)
|
|
else:
|
|
return await self._nonstream_completion(request, client)
|
|
|
|
async def _nonstream_completion(
|
|
self, request: CompletionRequest, client: Fireworks
|
|
) -> CompletionResponse:
|
|
params = await self._get_params(request)
|
|
r = await client.completion.acreate(**params)
|
|
return process_completion_response(r, self.formatter)
|
|
|
|
async def _stream_completion(
|
|
self, request: CompletionRequest, client: Fireworks
|
|
) -> AsyncGenerator:
|
|
params = await self._get_params(request)
|
|
|
|
stream = client.completion.acreate(**params)
|
|
async for chunk in process_completion_stream_response(stream, self.formatter):
|
|
yield chunk
|
|
|
|
async def chat_completion(
|
|
self,
|
|
model: str,
|
|
messages: List[Message],
|
|
sampling_params: Optional[SamplingParams] = SamplingParams(),
|
|
tools: Optional[List[ToolDefinition]] = None,
|
|
tool_choice: Optional[ToolChoice] = ToolChoice.auto,
|
|
tool_prompt_format: Optional[ToolPromptFormat] = ToolPromptFormat.json,
|
|
response_format: Optional[ResponseFormat] = None,
|
|
stream: Optional[bool] = False,
|
|
logprobs: Optional[LogProbConfig] = None,
|
|
) -> AsyncGenerator:
|
|
request = ChatCompletionRequest(
|
|
model=model,
|
|
messages=messages,
|
|
sampling_params=sampling_params,
|
|
tools=tools or [],
|
|
tool_choice=tool_choice,
|
|
tool_prompt_format=tool_prompt_format,
|
|
response_format=response_format,
|
|
stream=stream,
|
|
logprobs=logprobs,
|
|
)
|
|
|
|
client = Fireworks(api_key=self.config.api_key)
|
|
if stream:
|
|
return self._stream_chat_completion(request, client)
|
|
else:
|
|
return await self._nonstream_chat_completion(request, client)
|
|
|
|
async def _nonstream_chat_completion(
|
|
self, request: ChatCompletionRequest, client: Fireworks
|
|
) -> ChatCompletionResponse:
|
|
params = await self._get_params(request)
|
|
if "messages" in params:
|
|
r = await client.chat.completions.acreate(**params)
|
|
else:
|
|
r = await client.completion.acreate(**params)
|
|
return process_chat_completion_response(r, self.formatter)
|
|
|
|
async def _stream_chat_completion(
|
|
self, request: ChatCompletionRequest, client: Fireworks
|
|
) -> AsyncGenerator:
|
|
params = await self._get_params(request)
|
|
|
|
if "messages" in params:
|
|
stream = client.chat.completions.acreate(**params)
|
|
else:
|
|
stream = client.completion.acreate(**params)
|
|
|
|
async for chunk in process_chat_completion_stream_response(
|
|
stream, self.formatter
|
|
):
|
|
yield chunk
|
|
|
|
async def _get_params(
|
|
self, request: Union[ChatCompletionRequest, CompletionRequest]
|
|
) -> dict:
|
|
input_dict = {}
|
|
media_present = request_has_media(request)
|
|
|
|
if isinstance(request, ChatCompletionRequest):
|
|
if media_present:
|
|
input_dict["messages"] = [
|
|
await convert_message_to_dict(m) for m in request.messages
|
|
]
|
|
else:
|
|
input_dict["prompt"] = chat_completion_request_to_prompt(
|
|
request, self.formatter
|
|
)
|
|
elif isinstance(request, CompletionRequest):
|
|
assert (
|
|
not media_present
|
|
), "Fireworks does not support media for Completion requests"
|
|
input_dict["prompt"] = completion_request_to_prompt(request, self.formatter)
|
|
else:
|
|
raise ValueError(f"Unknown request type {type(request)}")
|
|
|
|
# Fireworks always prepends with BOS
|
|
if "prompt" in input_dict:
|
|
if input_dict["prompt"].startswith("<|begin_of_text|>"):
|
|
input_dict["prompt"] = input_dict["prompt"][len("<|begin_of_text|>") :]
|
|
|
|
options = get_sampling_options(request.sampling_params)
|
|
options.setdefault("max_tokens", 512)
|
|
|
|
if fmt := request.response_format:
|
|
if fmt.type == ResponseFormatType.json_schema.value:
|
|
options["response_format"] = {
|
|
"type": "json_object",
|
|
"schema": fmt.json_schema,
|
|
}
|
|
elif fmt.type == ResponseFormatType.grammar.value:
|
|
options["response_format"] = {
|
|
"type": "grammar",
|
|
"grammar": fmt.bnf,
|
|
}
|
|
else:
|
|
raise ValueError(f"Unknown response format {fmt.type}")
|
|
|
|
return {
|
|
"model": self.map_to_provider_model(request.model),
|
|
**input_dict,
|
|
"stream": request.stream,
|
|
**options,
|
|
}
|
|
|
|
async def embeddings(
|
|
self,
|
|
model: str,
|
|
contents: List[InterleavedTextMedia],
|
|
) -> EmbeddingsResponse:
|
|
raise NotImplementedError()
|