llama-stack/llama_stack/apis/post_training/post_training.py
Ihar Hrachyshka 9e6561a1ec
chore: enable pyupgrade fixes (#1806)
# What does this PR do?

The goal of this PR is code base modernization.

Schema reflection code needed a minor adjustment to handle UnionTypes
and collections.abc.AsyncIterator. (Both are preferred for latest Python
releases.)

Note to reviewers: almost all changes here are automatically generated
by pyupgrade. Some additional unused imports were cleaned up. The only
change worth of note can be found under `docs/openapi_generator` and
`llama_stack/strong_typing/schema.py` where reflection code was updated
to deal with "newer" types.

Signed-off-by: Ihar Hrachyshka <ihar.hrachyshka@gmail.com>
2025-05-01 14:23:50 -07:00

208 lines
5.4 KiB
Python

# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from datetime import datetime
from enum import Enum
from typing import Annotated, Any, Literal, Protocol
from pydantic import BaseModel, Field
from llama_stack.apis.common.content_types import URL
from llama_stack.apis.common.job_types import JobStatus
from llama_stack.apis.common.training_types import Checkpoint
from llama_stack.schema_utils import json_schema_type, register_schema, webmethod
@json_schema_type
class OptimizerType(Enum):
adam = "adam"
adamw = "adamw"
sgd = "sgd"
@json_schema_type
class DatasetFormat(Enum):
instruct = "instruct"
dialog = "dialog"
@json_schema_type
class DataConfig(BaseModel):
dataset_id: str
batch_size: int
shuffle: bool
data_format: DatasetFormat
validation_dataset_id: str | None = None
packed: bool | None = False
train_on_input: bool | None = False
@json_schema_type
class OptimizerConfig(BaseModel):
optimizer_type: OptimizerType
lr: float
weight_decay: float
num_warmup_steps: int
@json_schema_type
class EfficiencyConfig(BaseModel):
enable_activation_checkpointing: bool | None = False
enable_activation_offloading: bool | None = False
memory_efficient_fsdp_wrap: bool | None = False
fsdp_cpu_offload: bool | None = False
@json_schema_type
class TrainingConfig(BaseModel):
n_epochs: int
max_steps_per_epoch: int = 1
gradient_accumulation_steps: int = 1
max_validation_steps: int | None = 1
data_config: DataConfig | None = None
optimizer_config: OptimizerConfig | None = None
efficiency_config: EfficiencyConfig | None = None
dtype: str | None = "bf16"
@json_schema_type
class LoraFinetuningConfig(BaseModel):
type: Literal["LoRA"] = "LoRA"
lora_attn_modules: list[str]
apply_lora_to_mlp: bool
apply_lora_to_output: bool
rank: int
alpha: int
use_dora: bool | None = False
quantize_base: bool | None = False
@json_schema_type
class QATFinetuningConfig(BaseModel):
type: Literal["QAT"] = "QAT"
quantizer_name: str
group_size: int
AlgorithmConfig = Annotated[LoraFinetuningConfig | QATFinetuningConfig, Field(discriminator="type")]
register_schema(AlgorithmConfig, name="AlgorithmConfig")
@json_schema_type
class PostTrainingJobLogStream(BaseModel):
"""Stream of logs from a finetuning job."""
job_uuid: str
log_lines: list[str]
@json_schema_type
class RLHFAlgorithm(Enum):
dpo = "dpo"
@json_schema_type
class DPOAlignmentConfig(BaseModel):
reward_scale: float
reward_clip: float
epsilon: float
gamma: float
@json_schema_type
class PostTrainingRLHFRequest(BaseModel):
"""Request to finetune a model."""
job_uuid: str
finetuned_model: URL
dataset_id: str
validation_dataset_id: str
algorithm: RLHFAlgorithm
algorithm_config: DPOAlignmentConfig
optimizer_config: OptimizerConfig
training_config: TrainingConfig
# TODO: define these
hyperparam_search_config: dict[str, Any]
logger_config: dict[str, Any]
class PostTrainingJob(BaseModel):
job_uuid: str
@json_schema_type
class PostTrainingJobStatusResponse(BaseModel):
"""Status of a finetuning job."""
job_uuid: str
status: JobStatus
scheduled_at: datetime | None = None
started_at: datetime | None = None
completed_at: datetime | None = None
resources_allocated: dict[str, Any] | None = None
checkpoints: list[Checkpoint] = Field(default_factory=list)
class ListPostTrainingJobsResponse(BaseModel):
data: list[PostTrainingJob]
@json_schema_type
class PostTrainingJobArtifactsResponse(BaseModel):
"""Artifacts of a finetuning job."""
job_uuid: str
checkpoints: list[Checkpoint] = Field(default_factory=list)
# TODO(ashwin): metrics, evals
class PostTraining(Protocol):
@webmethod(route="/post-training/supervised-fine-tune", method="POST")
async def supervised_fine_tune(
self,
job_uuid: str,
training_config: TrainingConfig,
hyperparam_search_config: dict[str, Any],
logger_config: dict[str, Any],
model: str | None = Field(
default=None,
description="Model descriptor for training if not in provider config`",
),
checkpoint_dir: str | None = None,
algorithm_config: AlgorithmConfig | None = None,
) -> PostTrainingJob: ...
@webmethod(route="/post-training/preference-optimize", method="POST")
async def preference_optimize(
self,
job_uuid: str,
finetuned_model: str,
algorithm_config: DPOAlignmentConfig,
training_config: TrainingConfig,
hyperparam_search_config: dict[str, Any],
logger_config: dict[str, Any],
) -> PostTrainingJob: ...
@webmethod(route="/post-training/jobs", method="GET")
async def get_training_jobs(self) -> ListPostTrainingJobsResponse: ...
@webmethod(route="/post-training/job/status", method="GET")
async def get_training_job_status(self, job_uuid: str) -> PostTrainingJobStatusResponse: ...
@webmethod(route="/post-training/job/cancel", method="POST")
async def cancel_training_job(self, job_uuid: str) -> None: ...
@webmethod(route="/post-training/job/artifacts", method="GET")
async def get_training_job_artifacts(self, job_uuid: str) -> PostTrainingJobArtifactsResponse: ...