forked from phoenix-oss/llama-stack-mirror
# What does this PR do? The goal of this PR is code base modernization. Schema reflection code needed a minor adjustment to handle UnionTypes and collections.abc.AsyncIterator. (Both are preferred for latest Python releases.) Note to reviewers: almost all changes here are automatically generated by pyupgrade. Some additional unused imports were cleaned up. The only change worth of note can be found under `docs/openapi_generator` and `llama_stack/strong_typing/schema.py` where reflection code was updated to deal with "newer" types. Signed-off-by: Ihar Hrachyshka <ihar.hrachyshka@gmail.com>
379 lines
15 KiB
Python
379 lines
15 KiB
Python
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
|
# All rights reserved.
|
|
#
|
|
# This source code is licensed under the terms described in the LICENSE file in
|
|
# the root directory of this source tree.
|
|
|
|
from collections.abc import AsyncGenerator, AsyncIterator
|
|
from typing import Any
|
|
|
|
from ibm_watson_machine_learning.foundation_models import Model
|
|
from ibm_watson_machine_learning.metanames import GenTextParamsMetaNames as GenParams
|
|
from openai import AsyncOpenAI
|
|
|
|
from llama_stack.apis.common.content_types import InterleavedContent, InterleavedContentItem
|
|
from llama_stack.apis.inference import (
|
|
ChatCompletionRequest,
|
|
ChatCompletionResponse,
|
|
CompletionRequest,
|
|
EmbeddingsResponse,
|
|
EmbeddingTaskType,
|
|
Inference,
|
|
LogProbConfig,
|
|
Message,
|
|
ResponseFormat,
|
|
SamplingParams,
|
|
TextTruncation,
|
|
ToolChoice,
|
|
ToolConfig,
|
|
ToolDefinition,
|
|
ToolPromptFormat,
|
|
)
|
|
from llama_stack.apis.inference.inference import (
|
|
GreedySamplingStrategy,
|
|
OpenAIChatCompletion,
|
|
OpenAIChatCompletionChunk,
|
|
OpenAICompletion,
|
|
OpenAIMessageParam,
|
|
OpenAIResponseFormatParam,
|
|
TopKSamplingStrategy,
|
|
TopPSamplingStrategy,
|
|
)
|
|
from llama_stack.providers.utils.inference.model_registry import ModelRegistryHelper
|
|
from llama_stack.providers.utils.inference.openai_compat import (
|
|
OpenAICompatCompletionChoice,
|
|
OpenAICompatCompletionResponse,
|
|
prepare_openai_completion_params,
|
|
process_chat_completion_response,
|
|
process_chat_completion_stream_response,
|
|
process_completion_response,
|
|
process_completion_stream_response,
|
|
)
|
|
from llama_stack.providers.utils.inference.prompt_adapter import (
|
|
chat_completion_request_to_prompt,
|
|
completion_request_to_prompt,
|
|
request_has_media,
|
|
)
|
|
|
|
from . import WatsonXConfig
|
|
from .models import MODEL_ENTRIES
|
|
|
|
|
|
class WatsonXInferenceAdapter(Inference, ModelRegistryHelper):
|
|
def __init__(self, config: WatsonXConfig) -> None:
|
|
ModelRegistryHelper.__init__(self, MODEL_ENTRIES)
|
|
|
|
print(f"Initializing watsonx InferenceAdapter({config.url})...")
|
|
|
|
self._config = config
|
|
|
|
self._project_id = self._config.project_id
|
|
|
|
async def initialize(self) -> None:
|
|
pass
|
|
|
|
async def shutdown(self) -> None:
|
|
pass
|
|
|
|
async def completion(
|
|
self,
|
|
model_id: str,
|
|
content: InterleavedContent,
|
|
sampling_params: SamplingParams | None = None,
|
|
response_format: ResponseFormat | None = None,
|
|
stream: bool | None = False,
|
|
logprobs: LogProbConfig | None = None,
|
|
) -> AsyncGenerator:
|
|
if sampling_params is None:
|
|
sampling_params = SamplingParams()
|
|
model = await self.model_store.get_model(model_id)
|
|
request = CompletionRequest(
|
|
model=model.provider_resource_id,
|
|
content=content,
|
|
sampling_params=sampling_params,
|
|
response_format=response_format,
|
|
stream=stream,
|
|
logprobs=logprobs,
|
|
)
|
|
if stream:
|
|
return self._stream_completion(request)
|
|
else:
|
|
return await self._nonstream_completion(request)
|
|
|
|
def _get_client(self, model_id) -> Model:
|
|
config_api_key = self._config.api_key.get_secret_value() if self._config.api_key else None
|
|
config_url = self._config.url
|
|
project_id = self._config.project_id
|
|
credentials = {"url": config_url, "apikey": config_api_key}
|
|
|
|
return Model(model_id=model_id, credentials=credentials, project_id=project_id)
|
|
|
|
def _get_openai_client(self) -> AsyncOpenAI:
|
|
if not self._openai_client:
|
|
self._openai_client = AsyncOpenAI(
|
|
base_url=f"{self._config.url}/openai/v1",
|
|
api_key=self._config.api_key,
|
|
)
|
|
return self._openai_client
|
|
|
|
async def _nonstream_completion(self, request: CompletionRequest) -> ChatCompletionResponse:
|
|
params = await self._get_params(request)
|
|
r = self._get_client(request.model).generate(**params)
|
|
choices = []
|
|
if "results" in r:
|
|
for result in r["results"]:
|
|
choice = OpenAICompatCompletionChoice(
|
|
finish_reason=result["stop_reason"] if result["stop_reason"] else None,
|
|
text=result["generated_text"],
|
|
)
|
|
choices.append(choice)
|
|
response = OpenAICompatCompletionResponse(
|
|
choices=choices,
|
|
)
|
|
return process_completion_response(response)
|
|
|
|
async def _stream_completion(self, request: CompletionRequest) -> AsyncGenerator:
|
|
params = await self._get_params(request)
|
|
|
|
async def _generate_and_convert_to_openai_compat():
|
|
s = self._get_client(request.model).generate_text_stream(**params)
|
|
for chunk in s:
|
|
choice = OpenAICompatCompletionChoice(
|
|
finish_reason=None,
|
|
text=chunk,
|
|
)
|
|
yield OpenAICompatCompletionResponse(
|
|
choices=[choice],
|
|
)
|
|
|
|
stream = _generate_and_convert_to_openai_compat()
|
|
async for chunk in process_completion_stream_response(stream):
|
|
yield chunk
|
|
|
|
async def chat_completion(
|
|
self,
|
|
model_id: str,
|
|
messages: list[Message],
|
|
sampling_params: SamplingParams | None = None,
|
|
tools: list[ToolDefinition] | None = None,
|
|
tool_choice: ToolChoice | None = ToolChoice.auto,
|
|
tool_prompt_format: ToolPromptFormat | None = None,
|
|
response_format: ResponseFormat | None = None,
|
|
stream: bool | None = False,
|
|
logprobs: LogProbConfig | None = None,
|
|
tool_config: ToolConfig | None = None,
|
|
) -> AsyncGenerator:
|
|
if sampling_params is None:
|
|
sampling_params = SamplingParams()
|
|
model = await self.model_store.get_model(model_id)
|
|
request = ChatCompletionRequest(
|
|
model=model.provider_resource_id,
|
|
messages=messages,
|
|
sampling_params=sampling_params,
|
|
tools=tools or [],
|
|
response_format=response_format,
|
|
stream=stream,
|
|
logprobs=logprobs,
|
|
tool_config=tool_config,
|
|
)
|
|
|
|
if stream:
|
|
return self._stream_chat_completion(request)
|
|
else:
|
|
return await self._nonstream_chat_completion(request)
|
|
|
|
async def _nonstream_chat_completion(self, request: ChatCompletionRequest) -> ChatCompletionResponse:
|
|
params = await self._get_params(request)
|
|
r = self._get_client(request.model).generate(**params)
|
|
choices = []
|
|
if "results" in r:
|
|
for result in r["results"]:
|
|
choice = OpenAICompatCompletionChoice(
|
|
finish_reason=result["stop_reason"] if result["stop_reason"] else None,
|
|
text=result["generated_text"],
|
|
)
|
|
choices.append(choice)
|
|
response = OpenAICompatCompletionResponse(
|
|
choices=choices,
|
|
)
|
|
return process_chat_completion_response(response, request)
|
|
|
|
async def _stream_chat_completion(self, request: ChatCompletionRequest) -> AsyncGenerator:
|
|
params = await self._get_params(request)
|
|
model_id = request.model
|
|
|
|
# if we shift to TogetherAsyncClient, we won't need this wrapper
|
|
async def _to_async_generator():
|
|
s = self._get_client(model_id).generate_text_stream(**params)
|
|
for chunk in s:
|
|
choice = OpenAICompatCompletionChoice(
|
|
finish_reason=None,
|
|
text=chunk,
|
|
)
|
|
yield OpenAICompatCompletionResponse(
|
|
choices=[choice],
|
|
)
|
|
|
|
stream = _to_async_generator()
|
|
async for chunk in process_chat_completion_stream_response(stream, request):
|
|
yield chunk
|
|
|
|
async def _get_params(self, request: ChatCompletionRequest | CompletionRequest) -> dict:
|
|
input_dict = {"params": {}}
|
|
media_present = request_has_media(request)
|
|
llama_model = self.get_llama_model(request.model)
|
|
if isinstance(request, ChatCompletionRequest):
|
|
input_dict["prompt"] = await chat_completion_request_to_prompt(request, llama_model)
|
|
else:
|
|
assert not media_present, "Together does not support media for Completion requests"
|
|
input_dict["prompt"] = await completion_request_to_prompt(request)
|
|
if request.sampling_params:
|
|
if request.sampling_params.strategy:
|
|
input_dict["params"][GenParams.DECODING_METHOD] = request.sampling_params.strategy.type
|
|
if request.sampling_params.max_tokens:
|
|
input_dict["params"][GenParams.MAX_NEW_TOKENS] = request.sampling_params.max_tokens
|
|
if request.sampling_params.repetition_penalty:
|
|
input_dict["params"][GenParams.REPETITION_PENALTY] = request.sampling_params.repetition_penalty
|
|
|
|
if isinstance(request.sampling_params.strategy, TopPSamplingStrategy):
|
|
input_dict["params"][GenParams.TOP_P] = request.sampling_params.strategy.top_p
|
|
input_dict["params"][GenParams.TEMPERATURE] = request.sampling_params.strategy.temperature
|
|
if isinstance(request.sampling_params.strategy, TopKSamplingStrategy):
|
|
input_dict["params"][GenParams.TOP_K] = request.sampling_params.strategy.top_k
|
|
if isinstance(request.sampling_params.strategy, GreedySamplingStrategy):
|
|
input_dict["params"][GenParams.TEMPERATURE] = 0.0
|
|
|
|
input_dict["params"][GenParams.STOP_SEQUENCES] = ["<|endoftext|>"]
|
|
|
|
params = {
|
|
**input_dict,
|
|
}
|
|
return params
|
|
|
|
async def embeddings(
|
|
self,
|
|
model_id: str,
|
|
contents: list[str] | list[InterleavedContentItem],
|
|
text_truncation: TextTruncation | None = TextTruncation.none,
|
|
output_dimension: int | None = None,
|
|
task_type: EmbeddingTaskType | None = None,
|
|
) -> EmbeddingsResponse:
|
|
raise NotImplementedError("embedding is not supported for watsonx")
|
|
|
|
async def openai_completion(
|
|
self,
|
|
model: str,
|
|
prompt: str | list[str] | list[int] | list[list[int]],
|
|
best_of: int | None = None,
|
|
echo: bool | None = None,
|
|
frequency_penalty: float | None = None,
|
|
logit_bias: dict[str, float] | None = None,
|
|
logprobs: bool | None = None,
|
|
max_tokens: int | None = None,
|
|
n: int | None = None,
|
|
presence_penalty: float | None = None,
|
|
seed: int | None = None,
|
|
stop: str | list[str] | None = None,
|
|
stream: bool | None = None,
|
|
stream_options: dict[str, Any] | None = None,
|
|
temperature: float | None = None,
|
|
top_p: float | None = None,
|
|
user: str | None = None,
|
|
guided_choice: list[str] | None = None,
|
|
prompt_logprobs: int | None = None,
|
|
) -> OpenAICompletion:
|
|
model_obj = await self.model_store.get_model(model)
|
|
params = await prepare_openai_completion_params(
|
|
model=model_obj.provider_resource_id,
|
|
prompt=prompt,
|
|
best_of=best_of,
|
|
echo=echo,
|
|
frequency_penalty=frequency_penalty,
|
|
logit_bias=logit_bias,
|
|
logprobs=logprobs,
|
|
max_tokens=max_tokens,
|
|
n=n,
|
|
presence_penalty=presence_penalty,
|
|
seed=seed,
|
|
stop=stop,
|
|
stream=stream,
|
|
stream_options=stream_options,
|
|
temperature=temperature,
|
|
top_p=top_p,
|
|
user=user,
|
|
)
|
|
return await self._get_openai_client().completions.create(**params) # type: ignore
|
|
|
|
async def openai_chat_completion(
|
|
self,
|
|
model: str,
|
|
messages: list[OpenAIMessageParam],
|
|
frequency_penalty: float | None = None,
|
|
function_call: str | dict[str, Any] | None = None,
|
|
functions: list[dict[str, Any]] | None = None,
|
|
logit_bias: dict[str, float] | None = None,
|
|
logprobs: bool | None = None,
|
|
max_completion_tokens: int | None = None,
|
|
max_tokens: int | None = None,
|
|
n: int | None = None,
|
|
parallel_tool_calls: bool | None = None,
|
|
presence_penalty: float | None = None,
|
|
response_format: OpenAIResponseFormatParam | None = None,
|
|
seed: int | None = None,
|
|
stop: str | list[str] | None = None,
|
|
stream: bool | None = None,
|
|
stream_options: dict[str, Any] | None = None,
|
|
temperature: float | None = None,
|
|
tool_choice: str | dict[str, Any] | None = None,
|
|
tools: list[dict[str, Any]] | None = None,
|
|
top_logprobs: int | None = None,
|
|
top_p: float | None = None,
|
|
user: str | None = None,
|
|
) -> OpenAIChatCompletion | AsyncIterator[OpenAIChatCompletionChunk]:
|
|
model_obj = await self.model_store.get_model(model)
|
|
params = await prepare_openai_completion_params(
|
|
model=model_obj.provider_resource_id,
|
|
messages=messages,
|
|
frequency_penalty=frequency_penalty,
|
|
function_call=function_call,
|
|
functions=functions,
|
|
logit_bias=logit_bias,
|
|
logprobs=logprobs,
|
|
max_completion_tokens=max_completion_tokens,
|
|
max_tokens=max_tokens,
|
|
n=n,
|
|
parallel_tool_calls=parallel_tool_calls,
|
|
presence_penalty=presence_penalty,
|
|
response_format=response_format,
|
|
seed=seed,
|
|
stop=stop,
|
|
stream=stream,
|
|
stream_options=stream_options,
|
|
temperature=temperature,
|
|
tool_choice=tool_choice,
|
|
tools=tools,
|
|
top_logprobs=top_logprobs,
|
|
top_p=top_p,
|
|
user=user,
|
|
)
|
|
if params.get("stream", False):
|
|
return self._stream_openai_chat_completion(params)
|
|
return await self._get_openai_client().chat.completions.create(**params) # type: ignore
|
|
|
|
async def _stream_openai_chat_completion(self, params: dict) -> AsyncGenerator:
|
|
# watsonx.ai sometimes adds usage data to the stream
|
|
include_usage = False
|
|
if params.get("stream_options", None):
|
|
include_usage = params["stream_options"].get("include_usage", False)
|
|
stream = await self._get_openai_client().chat.completions.create(**params)
|
|
|
|
seen_finish_reason = False
|
|
async for chunk in stream:
|
|
# Final usage chunk with no choices that the user didn't request, so discard
|
|
if not include_usage and seen_finish_reason and len(chunk.choices) == 0:
|
|
break
|
|
yield chunk
|
|
for choice in chunk.choices:
|
|
if choice.finish_reason:
|
|
seen_finish_reason = True
|
|
break
|