llama-stack/llama_stack/providers/remote/datasetio/huggingface/huggingface.py
Xi Yan a568bf3f9d
feat(dataset api): (1.5/n) fix dataset registeration (#1659)
# What does this PR do?

- fix dataset registeration & iterrows
> NOTE: the URL endpoint is changed to datasetio due to flaky path
routing

[//]: # (If resolving an issue, uncomment and update the line below)
[//]: # (Closes #[issue-number])

## Test Plan
```
LLAMA_STACK_CONFIG=fireworks pytest -v tests/integration/datasets/test_datasets.py
```
<img width="854" alt="image"
src="https://github.com/user-attachments/assets/0168b352-1c5a-48d1-8e9a-93141d418e54"
/>


[//]: # (## Documentation)
2025-03-15 16:48:09 -07:00

106 lines
3.7 KiB
Python

# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from typing import Any, Dict, List, Optional
from urllib.parse import parse_qs, urlparse
import datasets as hf_datasets
from llama_stack.apis.datasetio import DatasetIO, IterrowsResponse
from llama_stack.apis.datasets import Dataset
from llama_stack.providers.datatypes import DatasetsProtocolPrivate
from llama_stack.providers.utils.kvstore import kvstore_impl
from .config import HuggingfaceDatasetIOConfig
DATASETS_PREFIX = "datasets:"
def parse_hf_params(dataset_def: Dataset):
uri = dataset_def.source.uri
parsed_uri = urlparse(uri)
params = parse_qs(parsed_uri.query)
params = {k: v[0] for k, v in params.items()}
path = parsed_uri.path.lstrip("/")
return path, params
class HuggingfaceDatasetIOImpl(DatasetIO, DatasetsProtocolPrivate):
def __init__(self, config: HuggingfaceDatasetIOConfig) -> None:
self.config = config
# local registry for keeping track of datasets within the provider
self.dataset_infos = {}
self.kvstore = None
async def initialize(self) -> None:
self.kvstore = await kvstore_impl(self.config.kvstore)
# Load existing datasets from kvstore
start_key = DATASETS_PREFIX
end_key = f"{DATASETS_PREFIX}\xff"
stored_datasets = await self.kvstore.range(start_key, end_key)
for dataset in stored_datasets:
dataset = Dataset.model_validate_json(dataset)
self.dataset_infos[dataset.identifier] = dataset
async def shutdown(self) -> None: ...
async def register_dataset(
self,
dataset_def: Dataset,
) -> None:
# Store in kvstore
key = f"{DATASETS_PREFIX}{dataset_def.identifier}"
await self.kvstore.set(
key=key,
value=dataset_def.model_dump_json(),
)
self.dataset_infos[dataset_def.identifier] = dataset_def
async def unregister_dataset(self, dataset_id: str) -> None:
key = f"{DATASETS_PREFIX}{dataset_id}"
await self.kvstore.delete(key=key)
del self.dataset_infos[dataset_id]
async def iterrows(
self,
dataset_id: str,
start_index: Optional[int] = None,
limit: Optional[int] = None,
) -> IterrowsResponse:
dataset_def = self.dataset_infos[dataset_id]
path, params = parse_hf_params(dataset_def)
loaded_dataset = hf_datasets.load_dataset(path, **params)
start_index = start_index or 0
if limit is None or limit == -1:
end = len(loaded_dataset)
else:
end = min(start_index + limit, len(loaded_dataset))
rows = [loaded_dataset[i] for i in range(start_index, end)]
return IterrowsResponse(
data=rows,
next_index=end if end < len(loaded_dataset) else None,
)
async def append_rows(self, dataset_id: str, rows: List[Dict[str, Any]]) -> None:
dataset_def = self.dataset_infos[dataset_id]
path, params = parse_hf_params(dataset_def)
loaded_dataset = hf_datasets.load_dataset(path, **params)
# Convert rows to HF Dataset format
new_dataset = hf_datasets.Dataset.from_list(rows)
# Concatenate the new rows with existing dataset
updated_dataset = hf_datasets.concatenate_datasets([loaded_dataset, new_dataset])
if dataset_def.metadata.get("path", None):
updated_dataset.push_to_hub(dataset_def.metadata["path"])
else:
raise NotImplementedError("Uploading to URL-based datasets is not supported yet")