llama-stack/llama_stack/templates/vllm-gpu/vllm.py
Dinesh Yeduguru a5c57cd381
agents to use tools api (#673)
# What does this PR do?

PR #639 introduced the notion of Tools API and ability to invoke tools
through API just as any resource. This PR changes the Agents to start
using the Tools API to invoke tools. Major changes include:
1) Ability to specify tool groups with AgentConfig
2) Agent gets the corresponding tool definitions for the specified tools
and pass along to the model
3) Attachements are now named as Documents and their behavior is mostly
unchanged from user perspective
4) You can specify args that can be injected to a tool call through
Agent config. This is especially useful in case of memory tool, where
you want the tool to operate on a specific memory bank.
5) You can also register tool groups with args, which lets the agent
inject these as well into the tool call.
6) All tests have been migrated to use new tools API and fixtures
including client SDK tests
7) Telemetry just works with tools API because of our trace protocol
decorator


## Test Plan
```
pytest -s -v -k fireworks llama_stack/providers/tests/agents/test_agents.py  \
   --safety-shield=meta-llama/Llama-Guard-3-8B \
   --inference-model=meta-llama/Llama-3.1-8B-Instruct

pytest -s -v -k together  llama_stack/providers/tests/tools/test_tools.py \
   --safety-shield=meta-llama/Llama-Guard-3-8B \
   --inference-model=meta-llama/Llama-3.1-8B-Instruct

LLAMA_STACK_CONFIG="/Users/dineshyv/.llama/distributions/llamastack-together/together-run.yaml" pytest -v tests/client-sdk/agents/test_agents.py
```
run.yaml:
https://gist.github.com/dineshyv/0365845ad325e1c2cab755788ccc5994

Notebook:
https://colab.research.google.com/drive/1ck7hXQxRl6UvT-ijNRZ-gMZxH1G3cN2d?usp=sharing
2025-01-08 19:01:00 -08:00

127 lines
4.3 KiB
Python

# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from llama_stack.apis.models.models import ModelType
from llama_stack.distribution.datatypes import ModelInput, Provider
from llama_stack.providers.inline.inference.sentence_transformers import (
SentenceTransformersInferenceConfig,
)
from llama_stack.providers.inline.inference.vllm import VLLMConfig
from llama_stack.providers.inline.memory.faiss.config import FaissImplConfig
from llama_stack.templates.template import (
DistributionTemplate,
RunConfigSettings,
ToolGroupInput,
)
def get_distribution_template() -> DistributionTemplate:
providers = {
"inference": ["inline::vllm"],
"memory": ["inline::faiss", "remote::chromadb", "remote::pgvector"],
"safety": ["inline::llama-guard"],
"agents": ["inline::meta-reference"],
"telemetry": ["inline::meta-reference"],
"eval": ["inline::meta-reference"],
"datasetio": ["remote::huggingface", "inline::localfs"],
"scoring": ["inline::basic", "inline::llm-as-judge", "inline::braintrust"],
"tool_runtime": [
"remote::brave-search",
"remote::tavily-search",
"inline::code-interpreter",
"inline::memory-runtime",
],
}
name = "vllm-gpu"
inference_provider = Provider(
provider_id="vllm",
provider_type="inline::vllm",
config=VLLMConfig.sample_run_config(),
)
memory_provider = Provider(
provider_id="faiss",
provider_type="inline::faiss",
config=FaissImplConfig.sample_run_config(f"distributions/{name}"),
)
embedding_provider = Provider(
provider_id="sentence-transformers",
provider_type="inline::sentence-transformers",
config=SentenceTransformersInferenceConfig.sample_run_config(),
)
inference_model = ModelInput(
model_id="${env.INFERENCE_MODEL}",
provider_id="vllm",
)
embedding_model = ModelInput(
model_id="all-MiniLM-L6-v2",
provider_id="sentence-transformers",
model_type=ModelType.embedding,
metadata={
"embedding_dimension": 384,
},
)
default_tool_groups = [
ToolGroupInput(
toolgroup_id="builtin::websearch",
provider_id="tavily-search",
),
ToolGroupInput(
toolgroup_id="builtin::memory",
provider_id="memory-runtime",
),
ToolGroupInput(
toolgroup_id="builtin::code_interpreter",
provider_id="code-interpreter",
),
]
return DistributionTemplate(
name=name,
distro_type="self_hosted",
description="Use a built-in vLLM engine for running LLM inference",
docker_image=None,
template_path=None,
providers=providers,
default_models=[inference_model],
run_configs={
"run.yaml": RunConfigSettings(
provider_overrides={
"inference": [inference_provider, embedding_provider],
"memory": [memory_provider],
},
default_models=[inference_model, embedding_model],
default_tool_groups=default_tool_groups,
),
},
run_config_env_vars={
"LLAMASTACK_PORT": (
"5001",
"Port for the Llama Stack distribution server",
),
"INFERENCE_MODEL": (
"meta-llama/Llama-3.2-3B-Instruct",
"Inference model loaded into the vLLM engine",
),
"TENSOR_PARALLEL_SIZE": (
"1",
"Number of tensor parallel replicas (number of GPUs to use).",
),
"MAX_TOKENS": (
"4096",
"Maximum number of tokens to generate.",
),
"ENFORCE_EAGER": (
"False",
"Whether to use eager mode for inference (otherwise cuda graphs are used).",
),
"GPU_MEMORY_UTILIZATION": (
"0.7",
"GPU memory utilization for the vLLM engine.",
),
},
)