forked from phoenix-oss/llama-stack-mirror
# What does this PR do? Move around bits. This makes the copies from llama-models _much_ easier to maintain and ensures we don't entangle meta-reference specific tidbits into llama-models code even by accident. Also, kills the meta-reference-quantized-gpu distro and rolls quantization deps into meta-reference-gpu. ## Test Plan ``` LLAMA_MODELS_DEBUG=1 \ with-proxy llama stack run meta-reference-gpu \ --env INFERENCE_MODEL=meta-llama/Llama-4-Scout-17B-16E-Instruct \ --env INFERENCE_CHECKPOINT_DIR=<DIR> \ --env MODEL_PARALLEL_SIZE=4 \ --env QUANTIZATION_TYPE=fp8_mixed ``` Start a server with and without quantization. Point integration tests to it using: ``` pytest -s -v tests/integration/inference/test_text_inference.py \ --stack-config http://localhost:8321 --text-model meta-llama/Llama-4-Scout-17B-16E-Instruct ```
67 lines
1.8 KiB
Python
Executable file
67 lines
1.8 KiB
Python
Executable file
#!/usr/bin/env python
|
|
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
|
# All rights reserved.
|
|
#
|
|
# This source code is licensed under the terms described in the LICENSE file in
|
|
# the root directory of this source tree.
|
|
|
|
# Run this script:
|
|
# torchrun --nproc_per_node=8 scripts/generate_prompt_format.py meta-llama/Llama-4-17B-Omni-Instruct-BF16-16E ~/.llama/checkpoints/Llama-4-17B-Omni-Instruct-BF16-16E/ llama_stack.models.llama.llama4.prompts llama_stack/models/llama/llama4/prompt_format.md
|
|
|
|
|
|
import importlib
|
|
import os
|
|
from pathlib import Path
|
|
|
|
import fire
|
|
|
|
from llama_stack.models.llama.llama3.generation import Llama3
|
|
from llama_stack.models.llama.llama4.generation import Llama4
|
|
from llama_stack.models.llama.sku_list import resolve_model
|
|
|
|
THIS_DIR = Path(__file__).parent.resolve()
|
|
|
|
|
|
def run_main(
|
|
model_id: str,
|
|
checkpoint_dir: str,
|
|
module_name: str,
|
|
output_path: str,
|
|
llama4: bool = True,
|
|
):
|
|
module = importlib.import_module(module_name)
|
|
assert hasattr(module, "usecases"), f"Module {module_name} missing usecases function"
|
|
|
|
llama_model = resolve_model(model_id)
|
|
if not llama_model:
|
|
raise ValueError(f"Model {model_id} not found")
|
|
|
|
cls = Llama4 if llama4 else Llama3
|
|
generator = cls.build(
|
|
ckpt_dir=checkpoint_dir,
|
|
max_seq_len=4096,
|
|
max_batch_size=1,
|
|
)
|
|
|
|
use_cases = module.usecases()
|
|
text = ""
|
|
for u in use_cases:
|
|
if isinstance(u, str):
|
|
use_case_text = f"\n{u}\n"
|
|
else:
|
|
use_case_text = u.to_text(generator)
|
|
|
|
text += use_case_text
|
|
print(use_case_text)
|
|
|
|
os.makedirs(os.path.dirname(output_path), exist_ok=True)
|
|
with open(output_path, "w") as f:
|
|
f.write(text)
|
|
|
|
|
|
def main():
|
|
fire.Fire(run_main)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
main()
|