forked from phoenix-oss/llama-stack-mirror
* wip * dataset validation * test_scoring * cleanup * clean up test * comments * error checking * dataset client * test client: * datasetio client * clean up * basic scoring function works * scorer wip * equality scorer * score batch impl * score batch * update scoring test * refactor * validate scorer input * address comments * evals with generation * add all rows scores to ScoringResult * minor typing * bugfix * scoring function def rename * rebase name * refactor * address comments * Update iOS inference instructions for new quantization * Small updates to quantization config * Fix score threshold in faiss * Bump version to 0.0.45 * Handle both ipv6 and ipv4 interfaces together * update manifest for build templates * Update getting_started.md * chatcompletion & completion input type validation * inclusion->subsetof * error checking * scoring_function -> scoring_fn rename, scorer -> scoring_fn rename * address comments * [Evals API][5/n] fixes to generate openapi spec (#323) * generate openapi * typing comment, dataset -> dataset_id * remove custom type * sample eval run.yaml --------- Co-authored-by: Dalton Flanagan <6599399+dltn@users.noreply.github.com> Co-authored-by: Ashwin Bharambe <ashwin.bharambe@gmail.com>
58 lines
1.6 KiB
Python
58 lines
1.6 KiB
Python
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
|
# All rights reserved.
|
|
#
|
|
# This source code is licensed under the terms described in the LICENSE file in
|
|
# the root directory of this source tree.
|
|
|
|
from typing import Any, Dict, List, Protocol, runtime_checkable
|
|
|
|
from llama_models.schema_utils import json_schema_type, webmethod
|
|
from pydantic import BaseModel
|
|
|
|
from llama_models.llama3.api.datatypes import * # noqa: F403
|
|
from llama_stack.apis.scoring_functions import * # noqa: F403
|
|
|
|
|
|
# mapping of metric to value
|
|
ScoringResultRow = Dict[str, Any]
|
|
|
|
|
|
@json_schema_type
|
|
class ScoringResult(BaseModel):
|
|
score_rows: List[ScoringResultRow]
|
|
# aggregated metrics to value
|
|
aggregated_results: Dict[str, Any]
|
|
|
|
|
|
@json_schema_type
|
|
class ScoreBatchResponse(BaseModel):
|
|
dataset_id: Optional[str] = None
|
|
results: Dict[str, ScoringResult]
|
|
|
|
|
|
@json_schema_type
|
|
class ScoreResponse(BaseModel):
|
|
# each key in the dict is a scoring function name
|
|
results: Dict[str, ScoringResult]
|
|
|
|
|
|
class ScoringFunctionStore(Protocol):
|
|
def get_scoring_function(self, name: str) -> ScoringFnDefWithProvider: ...
|
|
|
|
|
|
@runtime_checkable
|
|
class Scoring(Protocol):
|
|
scoring_function_store: ScoringFunctionStore
|
|
|
|
@webmethod(route="/scoring/score_batch")
|
|
async def score_batch(
|
|
self,
|
|
dataset_id: str,
|
|
scoring_functions: List[str],
|
|
save_results_dataset: bool = False,
|
|
) -> ScoreBatchResponse: ...
|
|
|
|
@webmethod(route="/scoring/score")
|
|
async def score(
|
|
self, input_rows: List[Dict[str, Any]], scoring_functions: List[str]
|
|
) -> ScoreResponse: ...
|