llama-stack/tests/unit/providers/nvidia/test_supervised_fine_tuning.py
Rashmi Pawar ace82836c1
feat: NVIDIA allow non-llama model registration (#1859)
# What does this PR do?
Adds custom model registration functionality to NVIDIAInferenceAdapter
which let's the inference happen on:
- post-training model
- non-llama models in API Catalogue(behind
https://integrate.api.nvidia.com and endpoints compatible with
AyncOpenAI)

## Example Usage:
```python
from llama_stack.apis.models import Model, ModelType
from llama_stack.distribution.library_client import LlamaStackAsLibraryClient
client = LlamaStackAsLibraryClient("nvidia")
_ = client.initialize()

client.models.register(
        model_id=model_name,
        model_type=ModelType.llm,
        provider_id="nvidia"
)

response = client.inference.chat_completion(
    model_id=model_name,
    messages=[{"role":"system","content":"You are a helpful assistant."},{"role":"user","content":"Write a limerick about the wonders of GPU computing."}],
)
```

## Test Plan
```bash
pytest tests/unit/providers/nvidia/test_supervised_fine_tuning.py 
========================================================== test session starts ===========================================================
platform linux -- Python 3.10.0, pytest-8.3.5, pluggy-1.5.0
rootdir: /home/ubuntu/llama-stack
configfile: pyproject.toml
plugins: anyio-4.9.0
collected 6 items                                                                                                                        

tests/unit/providers/nvidia/test_supervised_fine_tuning.py ......                                                                  [100%]

============================================================ warnings summary ============================================================
../miniconda/envs/nvidia-1/lib/python3.10/site-packages/pydantic/fields.py:1076
  /home/ubuntu/miniconda/envs/nvidia-1/lib/python3.10/site-packages/pydantic/fields.py:1076: PydanticDeprecatedSince20: Using extra keyword arguments on `Field` is deprecated and will be removed. Use `json_schema_extra` instead. (Extra keys: 'contentEncoding'). Deprecated in Pydantic V2.0 to be removed in V3.0. See Pydantic V2 Migration Guide at https://errors.pydantic.dev/2.11/migration/
    warn(

-- Docs: https://docs.pytest.org/en/stable/how-to/capture-warnings.html
====================================================== 6 passed, 1 warning in 1.51s ======================================================
```

[//]: # (## Documentation)
Updated Readme.md

cc: @dglogo, @sumitb, @mattf
2025-04-24 17:13:33 -07:00

349 lines
14 KiB
Python

# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
import os
import unittest
import warnings
from unittest.mock import patch
import pytest
from llama_stack_client.types.algorithm_config_param import LoraFinetuningConfig, QatFinetuningConfig
from llama_stack_client.types.post_training_supervised_fine_tune_params import (
TrainingConfig,
TrainingConfigDataConfig,
TrainingConfigOptimizerConfig,
)
from llama_stack.apis.models import Model, ModelType
from llama_stack.providers.remote.inference.nvidia.nvidia import NVIDIAConfig, NVIDIAInferenceAdapter
from llama_stack.providers.remote.post_training.nvidia.post_training import (
ListNvidiaPostTrainingJobs,
NvidiaPostTrainingAdapter,
NvidiaPostTrainingConfig,
NvidiaPostTrainingJob,
NvidiaPostTrainingJobStatusResponse,
)
class TestNvidiaPostTraining(unittest.TestCase):
def setUp(self):
os.environ["NVIDIA_BASE_URL"] = "http://nemo.test" # needed for llm inference
os.environ["NVIDIA_CUSTOMIZER_URL"] = "http://nemo.test" # needed for nemo customizer
config = NvidiaPostTrainingConfig(
base_url=os.environ["NVIDIA_BASE_URL"], customizer_url=os.environ["NVIDIA_CUSTOMIZER_URL"], api_key=None
)
self.adapter = NvidiaPostTrainingAdapter(config)
self.make_request_patcher = patch(
"llama_stack.providers.remote.post_training.nvidia.post_training.NvidiaPostTrainingAdapter._make_request"
)
self.mock_make_request = self.make_request_patcher.start()
# Mock the inference client
inference_config = NVIDIAConfig(base_url=os.environ["NVIDIA_BASE_URL"], api_key=None)
self.inference_adapter = NVIDIAInferenceAdapter(inference_config)
self.mock_client = unittest.mock.MagicMock()
self.mock_client.chat.completions.create = unittest.mock.AsyncMock()
self.inference_mock_make_request = self.mock_client.chat.completions.create
self.inference_make_request_patcher = patch(
"llama_stack.providers.remote.inference.nvidia.nvidia.NVIDIAInferenceAdapter._get_client",
return_value=self.mock_client,
)
self.inference_make_request_patcher.start()
def tearDown(self):
self.make_request_patcher.stop()
self.inference_make_request_patcher.stop()
@pytest.fixture(autouse=True)
def inject_fixtures(self, run_async):
self.run_async = run_async
def _assert_request(self, mock_call, expected_method, expected_path, expected_params=None, expected_json=None):
"""Helper method to verify request details in mock calls."""
call_args = mock_call.call_args
if expected_method and expected_path:
if isinstance(call_args[0], tuple) and len(call_args[0]) == 2:
assert call_args[0] == (expected_method, expected_path)
else:
assert call_args[1]["method"] == expected_method
assert call_args[1]["path"] == expected_path
if expected_params:
assert call_args[1]["params"] == expected_params
if expected_json:
for key, value in expected_json.items():
assert call_args[1]["json"][key] == value
def test_supervised_fine_tune(self):
"""Test the supervised fine-tuning API call."""
self.mock_make_request.return_value = {
"id": "cust-JGTaMbJMdqjJU8WbQdN9Q2",
"created_at": "2024-12-09T04:06:28.542884",
"updated_at": "2024-12-09T04:06:28.542884",
"config": {
"schema_version": "1.0",
"id": "af783f5b-d985-4e5b-bbb7-f9eec39cc0b1",
"created_at": "2024-12-09T04:06:28.542657",
"updated_at": "2024-12-09T04:06:28.569837",
"custom_fields": {},
"name": "meta-llama/Llama-3.1-8B-Instruct",
"base_model": "meta-llama/Llama-3.1-8B-Instruct",
"model_path": "llama-3_1-8b-instruct",
"training_types": [],
"finetuning_types": ["lora"],
"precision": "bf16",
"num_gpus": 4,
"num_nodes": 1,
"micro_batch_size": 1,
"tensor_parallel_size": 1,
"max_seq_length": 4096,
},
"dataset": {
"schema_version": "1.0",
"id": "dataset-XU4pvGzr5tvawnbVxeJMTb",
"created_at": "2024-12-09T04:06:28.542657",
"updated_at": "2024-12-09T04:06:28.542660",
"custom_fields": {},
"name": "sample-basic-test",
"version_id": "main",
"version_tags": [],
},
"hyperparameters": {
"finetuning_type": "lora",
"training_type": "sft",
"batch_size": 16,
"epochs": 2,
"learning_rate": 0.0001,
"lora": {"adapter_dim": 16, "adapter_dropout": 0.1},
},
"output_model": "default/job-1234",
"status": "created",
"project": "default",
"custom_fields": {},
"ownership": {"created_by": "me", "access_policies": {}},
}
algorithm_config = LoraFinetuningConfig(
type="LoRA",
adapter_dim=16,
adapter_dropout=0.1,
apply_lora_to_mlp=True,
apply_lora_to_output=True,
alpha=16,
rank=16,
lora_attn_modules=["q_proj", "k_proj", "v_proj", "o_proj"],
)
data_config = TrainingConfigDataConfig(dataset_id="sample-basic-test", batch_size=16)
optimizer_config = TrainingConfigOptimizerConfig(
lr=0.0001,
)
training_config = TrainingConfig(
n_epochs=2,
data_config=data_config,
optimizer_config=optimizer_config,
)
with warnings.catch_warnings(record=True):
warnings.simplefilter("always")
training_job = self.run_async(
self.adapter.supervised_fine_tune(
job_uuid="1234",
model="meta-llama/Llama-3.1-8B-Instruct",
checkpoint_dir="",
algorithm_config=algorithm_config,
training_config=training_config,
logger_config={},
hyperparam_search_config={},
)
)
# check the output is a PostTrainingJob
assert isinstance(training_job, NvidiaPostTrainingJob)
assert training_job.job_uuid == "cust-JGTaMbJMdqjJU8WbQdN9Q2"
self.mock_make_request.assert_called_once()
self._assert_request(
self.mock_make_request,
"POST",
"/v1/customization/jobs",
expected_json={
"config": "meta/llama-3.1-8b-instruct",
"dataset": {"name": "sample-basic-test", "namespace": "default"},
"hyperparameters": {
"training_type": "sft",
"finetuning_type": "lora",
"epochs": 2,
"batch_size": 16,
"learning_rate": 0.0001,
"lora": {"alpha": 16, "adapter_dim": 16, "adapter_dropout": 0.1},
},
},
)
def test_supervised_fine_tune_with_qat(self):
algorithm_config = QatFinetuningConfig(type="QAT", quantizer_name="quantizer_name", group_size=1)
data_config = TrainingConfigDataConfig(dataset_id="sample-basic-test", batch_size=16)
optimizer_config = TrainingConfigOptimizerConfig(
lr=0.0001,
)
training_config = TrainingConfig(
n_epochs=2,
data_config=data_config,
optimizer_config=optimizer_config,
)
# This will raise NotImplementedError since QAT is not supported
with self.assertRaises(NotImplementedError):
self.run_async(
self.adapter.supervised_fine_tune(
job_uuid="1234",
model="meta-llama/Llama-3.1-8B-Instruct",
checkpoint_dir="",
algorithm_config=algorithm_config,
training_config=training_config,
logger_config={},
hyperparam_search_config={},
)
)
def test_get_training_job_status(self):
customizer_status_to_job_status = [
("running", "in_progress"),
("completed", "completed"),
("failed", "failed"),
("cancelled", "cancelled"),
("pending", "scheduled"),
("unknown", "scheduled"),
]
for customizer_status, expected_status in customizer_status_to_job_status:
with self.subTest(customizer_status=customizer_status, expected_status=expected_status):
self.mock_make_request.return_value = {
"created_at": "2024-12-09T04:06:28.580220",
"updated_at": "2024-12-09T04:21:19.852832",
"status": customizer_status,
"steps_completed": 1210,
"epochs_completed": 2,
"percentage_done": 100.0,
"best_epoch": 2,
"train_loss": 1.718016266822815,
"val_loss": 1.8661999702453613,
}
job_id = "cust-JGTaMbJMdqjJU8WbQdN9Q2"
status = self.run_async(self.adapter.get_training_job_status(job_uuid=job_id))
assert isinstance(status, NvidiaPostTrainingJobStatusResponse)
assert status.status.value == expected_status
assert status.steps_completed == 1210
assert status.epochs_completed == 2
assert status.percentage_done == 100.0
assert status.best_epoch == 2
assert status.train_loss == 1.718016266822815
assert status.val_loss == 1.8661999702453613
self._assert_request(
self.mock_make_request,
"GET",
f"/v1/customization/jobs/{job_id}/status",
expected_params={"job_id": job_id},
)
def test_get_training_jobs(self):
job_id = "cust-JGTaMbJMdqjJU8WbQdN9Q2"
self.mock_make_request.return_value = {
"data": [
{
"id": job_id,
"created_at": "2024-12-09T04:06:28.542884",
"updated_at": "2024-12-09T04:21:19.852832",
"config": {
"name": "meta-llama/Llama-3.1-8B-Instruct",
"base_model": "meta-llama/Llama-3.1-8B-Instruct",
},
"dataset": {"name": "default/sample-basic-test"},
"hyperparameters": {
"finetuning_type": "lora",
"training_type": "sft",
"batch_size": 16,
"epochs": 2,
"learning_rate": 0.0001,
"lora": {"adapter_dim": 16, "adapter_dropout": 0.1},
},
"output_model": "default/job-1234",
"status": "completed",
"project": "default",
}
]
}
jobs = self.run_async(self.adapter.get_training_jobs())
assert isinstance(jobs, ListNvidiaPostTrainingJobs)
assert len(jobs.data) == 1
job = jobs.data[0]
assert job.job_uuid == job_id
assert job.status.value == "completed"
self.mock_make_request.assert_called_once()
self._assert_request(
self.mock_make_request,
"GET",
"/v1/customization/jobs",
expected_params={"page": 1, "page_size": 10, "sort": "created_at"},
)
def test_cancel_training_job(self):
self.mock_make_request.return_value = {} # Empty response for successful cancellation
job_id = "cust-JGTaMbJMdqjJU8WbQdN9Q2"
result = self.run_async(self.adapter.cancel_training_job(job_uuid=job_id))
assert result is None
self.mock_make_request.assert_called_once()
self._assert_request(
self.mock_make_request,
"POST",
f"/v1/customization/jobs/{job_id}/cancel",
expected_params={"job_id": job_id},
)
def test_inference_register_model(self):
model_id = "default/job-1234"
model_type = ModelType.llm
model = Model(
identifier=model_id,
provider_id="nvidia",
provider_model_id=model_id,
provider_resource_id=model_id,
model_type=model_type,
)
result = self.run_async(self.inference_adapter.register_model(model))
assert result == model
assert len(self.inference_adapter.alias_to_provider_id_map) > 1
assert self.inference_adapter.get_provider_model_id(model.provider_model_id) == model_id
with patch.object(self.inference_adapter, "chat_completion") as mock_chat_completion:
self.run_async(
self.inference_adapter.chat_completion(
model_id=model_id,
messages=[{"role": "user", "content": "Hello, model"}],
)
)
mock_chat_completion.assert_called()
if __name__ == "__main__":
unittest.main()