llama-stack/tests/client-sdk/inference/test_inference.py
Vladimir Ivić b0c12d280a
Consolidating Inference tests under client-sdk tests (#751)
Summary:
Part of https://github.com/meta-llama/llama-stack/issues/651

We are adding more tests to the clients sdk for some basic coverage.

Those tests are inspired by the inference provider tests.

Test Plan:
Run tests via the command
```
LLAMA_STACK_CONFIG=llama_stack/templates/fireworks/run.yaml pytest tests/client-sdk/inference -v
```

Example output
```
tests/client-sdk/inference/test_inference.py::test_completion_non_streaming PASSED                                                                                                                                        [  7%]
tests/client-sdk/inference/test_inference.py::test_completion_streaming PASSED                                                                                                                                            [ 14%]
tests/client-sdk/inference/test_inference.py::test_completion_log_probs_non_streaming SKIPPED (Needs to be fixed)                                                                                                         [ 21%]
tests/client-sdk/inference/test_inference.py::test_completion_log_probs_streaming SKIPPED (Needs to be fixed)                                                                                                             [ 28%]
tests/client-sdk/inference/test_inference.py::test_completion_structured_output PASSED                                                                                                                                    [ 35%]
tests/client-sdk/inference/test_inference.py::test_text_chat_completion_non_streaming[What are the names of planets in our solar system?-Earth] PASSED                                                                    [ 42%]
tests/client-sdk/inference/test_inference.py::test_text_chat_completion_non_streaming[What are the names of the planets that have rings around them?-Saturn] PASSED                                                       [ 50%]
tests/client-sdk/inference/test_inference.py::test_text_chat_completion_streaming[What's the name of the Sun in latin?-Sol] PASSED                                                                                        [ 57%]
tests/client-sdk/inference/test_inference.py::test_text_chat_completion_streaming[What is the name of the US captial?-Washington] PASSED                                                                                  [ 64%]
tests/client-sdk/inference/test_inference.py::test_text_chat_completion_with_tool_calling_and_non_streaming PASSED                                                                                                        [ 71%]
tests/client-sdk/inference/test_inference.py::test_text_chat_completion_with_tool_calling_and_streaming PASSED                                                                                                            [ 78%]
tests/client-sdk/inference/test_inference.py::test_text_chat_completion_structured_output PASSED                                                                                                                          [ 85%]
tests/client-sdk/inference/test_inference.py::test_image_chat_completion_non_streaming PASSED                                                                                                                             [ 92%]

```
2025-01-13 17:46:02 -08:00

377 lines
12 KiB
Python

# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
import pytest
from llama_stack_client.lib.inference.event_logger import EventLogger
from pydantic import BaseModel
PROVIDER_TOOL_PROMPT_FORMAT = {
"remote::ollama": "python_list",
"remote::together": "json",
"remote::fireworks": "json",
}
@pytest.fixture(scope="session")
def provider_tool_format(inference_provider_type):
return (
PROVIDER_TOOL_PROMPT_FORMAT[inference_provider_type]
if inference_provider_type in PROVIDER_TOOL_PROMPT_FORMAT
else None
)
@pytest.fixture(scope="session")
def inference_provider_type(llama_stack_client):
providers = llama_stack_client.providers.list()
if "inference" not in providers:
pytest.fail("No inference providers available")
assert len(providers["inference"]) > 0
return providers["inference"][0].provider_type
@pytest.fixture(scope="session")
def text_model_id(llama_stack_client):
available_models = [
model.identifier
for model in llama_stack_client.models.list()
if model.identifier.startswith("meta-llama")
]
assert len(available_models) > 0
return available_models[0]
@pytest.fixture(scope="session")
def vision_model_id(llama_stack_client):
available_models = [
model.identifier
for model in llama_stack_client.models.list()
if "vision" in model.identifier.lower()
]
if len(available_models) == 0:
pytest.skip("No vision models available")
return available_models[0]
@pytest.fixture
def get_weather_tool_definition():
return {
"tool_name": "get_weather",
"description": "Get the current weather",
"parameters": {
"location": {
"param_type": "string",
"description": "The city and state, e.g. San Francisco, CA",
},
},
}
def test_completion_non_streaming(llama_stack_client, text_model_id):
response = llama_stack_client.inference.completion(
content="Complete the sentence using one word: Roses are red, violets are ",
stream=False,
model_id=text_model_id,
sampling_params={
"max_tokens": 50,
},
)
assert "blue" in response.content.lower().strip()
def test_completion_streaming(llama_stack_client, text_model_id):
response = llama_stack_client.inference.completion(
content="Complete the sentence using one word: Roses are red, violets are ",
stream=True,
model_id=text_model_id,
sampling_params={
"max_tokens": 50,
},
)
streamed_content = [chunk.delta for chunk in response]
assert "blue" in "".join(streamed_content).lower().strip()
def test_completion_log_probs_non_streaming(llama_stack_client, text_model_id):
response = llama_stack_client.inference.completion(
content="Complete the sentence: Micheael Jordan is born in ",
stream=False,
model_id=text_model_id,
sampling_params={
"max_tokens": 5,
},
logprobs={
"top_k": 3,
},
)
assert response.logprobs, "Logprobs should not be empty"
assert 1 <= len(response.logprobs) <= 5
assert all(len(logprob.logprobs_by_token) == 3 for logprob in response.logprobs)
def test_completion_log_probs_streaming(llama_stack_client, text_model_id):
response = llama_stack_client.inference.completion(
content="Complete the sentence: Micheael Jordan is born in ",
stream=True,
model_id=text_model_id,
sampling_params={
"max_tokens": 5,
},
logprobs={
"top_k": 3,
},
)
streamed_content = [chunk for chunk in response]
for chunk in streamed_content:
if chunk.delta: # if there's a token, we expect logprobs
assert chunk.logprobs, "Logprobs should not be empty"
assert all(
len(logprob.logprobs_by_token) == 3 for logprob in chunk.logprobs
)
else: # no token, no logprobs
assert not chunk.logprobs, "Logprobs should be empty"
def test_completion_structured_output(
llama_stack_client, text_model_id, inference_provider_type
):
user_input = """
Michael Jordan was born in 1963. He played basketball for the Chicago Bulls. He retired in 2003.
"""
class AnswerFormat(BaseModel):
name: str
year_born: str
year_retired: str
response = llama_stack_client.inference.completion(
model_id=text_model_id,
content=user_input,
stream=False,
sampling_params={
"max_tokens": 50,
},
response_format={
"type": "json_schema",
"json_schema": AnswerFormat.model_json_schema(),
},
)
answer = AnswerFormat.model_validate_json(response.content)
assert answer.name == "Michael Jordan"
assert answer.year_born == "1963"
assert answer.year_retired == "2003"
@pytest.mark.parametrize(
"question,expected",
[
("What are the names of planets in our solar system?", "Earth"),
("What are the names of the planets that have rings around them?", "Saturn"),
],
)
def test_text_chat_completion_non_streaming(
llama_stack_client, text_model_id, question, expected
):
response = llama_stack_client.inference.chat_completion(
model_id=text_model_id,
messages=[
{
"role": "user",
"content": question,
}
],
stream=False,
)
message_content = response.completion_message.content.lower().strip()
assert len(message_content) > 0
assert expected.lower() in message_content
@pytest.mark.parametrize(
"question,expected",
[
("What's the name of the Sun in latin?", "Sol"),
("What is the name of the US captial?", "Washington"),
],
)
def test_text_chat_completion_streaming(
llama_stack_client, text_model_id, question, expected
):
response = llama_stack_client.inference.chat_completion(
model_id=text_model_id,
messages=[{"role": "user", "content": question}],
stream=True,
)
streamed_content = [
str(log.content.lower().strip())
for log in EventLogger().log(response)
if log is not None
]
assert len(streamed_content) > 0
assert "assistant>" in streamed_content[0]
assert expected.lower() in "".join(streamed_content)
def test_text_chat_completion_with_tool_calling_and_non_streaming(
llama_stack_client, text_model_id, get_weather_tool_definition, provider_tool_format
):
response = llama_stack_client.inference.chat_completion(
model_id=text_model_id,
messages=[
{"role": "system", "content": "You are a helpful assistant."},
{"role": "user", "content": "What's the weather like in San Francisco?"},
],
tools=[get_weather_tool_definition],
tool_choice="auto",
tool_prompt_format=provider_tool_format,
stream=False,
)
# No content is returned for the system message since we expect the
# response to be a tool call
assert response.completion_message.content == ""
assert response.completion_message.role == "assistant"
assert response.completion_message.stop_reason == "end_of_turn"
assert len(response.completion_message.tool_calls) == 1
assert response.completion_message.tool_calls[0].tool_name == "get_weather"
assert response.completion_message.tool_calls[0].arguments == {
"location": "San Francisco, CA"
}
# Will extract streamed text and separate it from tool invocation content
# The returned tool inovcation content will be a string so it's easy to comapare with expected value
# e.g. "[get_weather, {'location': 'San Francisco, CA'}]"
def extract_tool_invocation_content(response):
text_content: str = ""
tool_invocation_content: str = ""
for log in EventLogger().log(response):
if log is None:
continue
if isinstance(log.content, str):
text_content += log.content
elif isinstance(log.content, object):
if isinstance(log.content.content, str):
continue
elif isinstance(log.content.content, object):
tool_invocation_content += f"[{log.content.content.tool_name}, {log.content.content.arguments}]"
return text_content, tool_invocation_content
def test_text_chat_completion_with_tool_calling_and_streaming(
llama_stack_client, text_model_id, get_weather_tool_definition, provider_tool_format
):
response = llama_stack_client.inference.chat_completion(
model_id=text_model_id,
messages=[
{"role": "system", "content": "You are a helpful assistant."},
{"role": "user", "content": "What's the weather like in San Francisco?"},
],
tools=[get_weather_tool_definition],
tool_choice="auto",
tool_prompt_format=provider_tool_format,
stream=True,
)
text_content, tool_invocation_content = extract_tool_invocation_content(response)
assert "Assistant>" in text_content
assert tool_invocation_content == "[get_weather, {'location': 'San Francisco, CA'}]"
def test_text_chat_completion_structured_output(
llama_stack_client, text_model_id, inference_provider_type
):
class AnswerFormat(BaseModel):
first_name: str
last_name: str
year_of_birth: int
num_seasons_in_nba: int
response = llama_stack_client.inference.chat_completion(
model_id=text_model_id,
messages=[
{
"role": "system",
"content": "You are a helpful assistant. Michael Jordan was born in 1963. He played basketball for the Chicago Bulls for 15 seasons.",
},
{
"role": "user",
"content": "Please give me information about Michael Jordan.",
},
],
response_format={
"type": "json_schema",
"json_schema": AnswerFormat.model_json_schema(),
},
stream=False,
)
answer = AnswerFormat.model_validate_json(response.completion_message.content)
assert answer.first_name == "Michael"
assert answer.last_name == "Jordan"
assert answer.year_of_birth == 1963
assert answer.num_seasons_in_nba == 15
def test_image_chat_completion_non_streaming(llama_stack_client, vision_model_id):
message = {
"role": "user",
"content": [
{
"type": "image",
"url": {
# TODO: Replace with Github based URI to resources/sample1.jpg
"uri": "https://www.healthypawspetinsurance.com/Images/V3/DogAndPuppyInsurance/Dog_CTA_Desktop_HeroImage.jpg"
},
},
{
"type": "text",
"text": "Describe what is in this image.",
},
],
}
response = llama_stack_client.inference.chat_completion(
model_id=vision_model_id,
messages=[message],
stream=False,
)
message_content = response.completion_message.content.lower().strip()
assert len(message_content) > 0
assert any(expected in message_content for expected in {"dog", "puppy", "pup"})
def test_image_chat_completion_streaming(llama_stack_client, vision_model_id):
message = {
"role": "user",
"content": [
{
"type": "image",
"url": {
# TODO: Replace with Github based URI to resources/sample1.jpg
"uri": "https://www.healthypawspetinsurance.com/Images/V3/DogAndPuppyInsurance/Dog_CTA_Desktop_HeroImage.jpg"
},
},
{
"type": "text",
"text": "Describe what is in this image.",
},
],
}
response = llama_stack_client.inference.chat_completion(
model_id=vision_model_id,
messages=[message],
stream=True,
)
streamed_content = [
str(log.content.lower().strip())
for log in EventLogger().log(response)
if log is not None
]
assert len(streamed_content) > 0
assert "assistant>" in streamed_content[0]
assert any(expected in streamed_content for expected in {"dog", "puppy", "pup"})