forked from phoenix-oss/llama-stack-mirror
Some checks failed
Integration Auth Tests / test-matrix (oauth2_token) (push) Failing after 4s
Integration Tests / test-matrix (http, inspect) (push) Failing after 9s
Integration Tests / test-matrix (http, inference) (push) Failing after 9s
Integration Tests / test-matrix (http, datasets) (push) Failing after 10s
Integration Tests / test-matrix (http, post_training) (push) Failing after 9s
Integration Tests / test-matrix (library, agents) (push) Failing after 7s
Integration Tests / test-matrix (http, agents) (push) Failing after 10s
Integration Tests / test-matrix (http, tool_runtime) (push) Failing after 8s
Integration Tests / test-matrix (http, providers) (push) Failing after 9s
Integration Tests / test-matrix (library, datasets) (push) Failing after 8s
Integration Tests / test-matrix (library, inference) (push) Failing after 9s
Integration Tests / test-matrix (http, scoring) (push) Failing after 10s
Test Llama Stack Build / generate-matrix (push) Successful in 6s
Integration Tests / test-matrix (library, providers) (push) Failing after 7s
Test Llama Stack Build / build-custom-container-distribution (push) Failing after 6s
Integration Tests / test-matrix (library, inspect) (push) Failing after 9s
Test Llama Stack Build / build-single-provider (push) Failing after 7s
Integration Tests / test-matrix (library, scoring) (push) Failing after 9s
Integration Tests / test-matrix (library, post_training) (push) Failing after 9s
Test Llama Stack Build / build-ubi9-container-distribution (push) Failing after 7s
Integration Tests / test-matrix (library, tool_runtime) (push) Failing after 10s
Unit Tests / unit-tests (3.11) (push) Failing after 7s
Test Llama Stack Build / build (push) Failing after 5s
Unit Tests / unit-tests (3.10) (push) Failing after 7s
Update ReadTheDocs / update-readthedocs (push) Failing after 6s
Unit Tests / unit-tests (3.12) (push) Failing after 8s
Unit Tests / unit-tests (3.13) (push) Failing after 7s
Test External Providers / test-external-providers (venv) (push) Failing after 26s
Pre-commit / pre-commit (push) Successful in 1m11s
# What does this PR do? Adds a new endpoint that is compatible with OpenAI for embeddings api. `/openai/v1/embeddings` Added providers for OpenAI, LiteLLM and SentenceTransformer. ## Test Plan ``` LLAMA_STACK_CONFIG=http://localhost:8321 pytest -sv tests/integration/inference/test_openai_embeddings.py --embedding-model all-MiniLM-L6-v2,text-embedding-3-small,gemini/text-embedding-004 ```
225 lines
8 KiB
Python
225 lines
8 KiB
Python
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
|
# All rights reserved.
|
|
#
|
|
# This source code is licensed under the terms described in the LICENSE file in
|
|
# the root directory of this source tree.
|
|
|
|
import logging
|
|
from collections.abc import AsyncIterator
|
|
from typing import Any
|
|
|
|
from openai import AsyncOpenAI
|
|
|
|
from llama_stack.apis.inference.inference import (
|
|
OpenAIChatCompletion,
|
|
OpenAIChatCompletionChunk,
|
|
OpenAICompletion,
|
|
OpenAIEmbeddingData,
|
|
OpenAIEmbeddingsResponse,
|
|
OpenAIEmbeddingUsage,
|
|
OpenAIMessageParam,
|
|
OpenAIResponseFormatParam,
|
|
)
|
|
from llama_stack.providers.utils.inference.litellm_openai_mixin import LiteLLMOpenAIMixin
|
|
from llama_stack.providers.utils.inference.openai_compat import prepare_openai_completion_params
|
|
|
|
from .config import OpenAIConfig
|
|
from .models import MODEL_ENTRIES
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
#
|
|
# This OpenAI adapter implements Inference methods using two clients -
|
|
#
|
|
# | Inference Method | Implementation Source |
|
|
# |----------------------------|--------------------------|
|
|
# | completion | LiteLLMOpenAIMixin |
|
|
# | chat_completion | LiteLLMOpenAIMixin |
|
|
# | embedding | LiteLLMOpenAIMixin |
|
|
# | batch_completion | LiteLLMOpenAIMixin |
|
|
# | batch_chat_completion | LiteLLMOpenAIMixin |
|
|
# | openai_completion | AsyncOpenAI |
|
|
# | openai_chat_completion | AsyncOpenAI |
|
|
# | openai_embeddings | AsyncOpenAI |
|
|
#
|
|
class OpenAIInferenceAdapter(LiteLLMOpenAIMixin):
|
|
def __init__(self, config: OpenAIConfig) -> None:
|
|
LiteLLMOpenAIMixin.__init__(
|
|
self,
|
|
MODEL_ENTRIES,
|
|
api_key_from_config=config.api_key,
|
|
provider_data_api_key_field="openai_api_key",
|
|
)
|
|
self.config = config
|
|
# we set is_openai_compat so users can use the canonical
|
|
# openai model names like "gpt-4" or "gpt-3.5-turbo"
|
|
# and the model name will be translated to litellm's
|
|
# "openai/gpt-4" or "openai/gpt-3.5-turbo" transparently.
|
|
# if we do not set this, users will be exposed to the
|
|
# litellm specific model names, an abstraction leak.
|
|
self.is_openai_compat = True
|
|
self._openai_client = AsyncOpenAI(
|
|
api_key=self.config.api_key,
|
|
)
|
|
|
|
async def initialize(self) -> None:
|
|
await super().initialize()
|
|
|
|
async def shutdown(self) -> None:
|
|
await super().shutdown()
|
|
|
|
async def openai_completion(
|
|
self,
|
|
model: str,
|
|
prompt: str | list[str] | list[int] | list[list[int]],
|
|
best_of: int | None = None,
|
|
echo: bool | None = None,
|
|
frequency_penalty: float | None = None,
|
|
logit_bias: dict[str, float] | None = None,
|
|
logprobs: bool | None = None,
|
|
max_tokens: int | None = None,
|
|
n: int | None = None,
|
|
presence_penalty: float | None = None,
|
|
seed: int | None = None,
|
|
stop: str | list[str] | None = None,
|
|
stream: bool | None = None,
|
|
stream_options: dict[str, Any] | None = None,
|
|
temperature: float | None = None,
|
|
top_p: float | None = None,
|
|
user: str | None = None,
|
|
guided_choice: list[str] | None = None,
|
|
prompt_logprobs: int | None = None,
|
|
) -> OpenAICompletion:
|
|
if guided_choice is not None:
|
|
logging.warning("guided_choice is not supported by the OpenAI API. Ignoring.")
|
|
if prompt_logprobs is not None:
|
|
logging.warning("prompt_logprobs is not supported by the OpenAI API. Ignoring.")
|
|
|
|
model_id = (await self.model_store.get_model(model)).provider_resource_id
|
|
if model_id.startswith("openai/"):
|
|
model_id = model_id[len("openai/") :]
|
|
params = await prepare_openai_completion_params(
|
|
model=model_id,
|
|
prompt=prompt,
|
|
best_of=best_of,
|
|
echo=echo,
|
|
frequency_penalty=frequency_penalty,
|
|
logit_bias=logit_bias,
|
|
logprobs=logprobs,
|
|
max_tokens=max_tokens,
|
|
n=n,
|
|
presence_penalty=presence_penalty,
|
|
seed=seed,
|
|
stop=stop,
|
|
stream=stream,
|
|
stream_options=stream_options,
|
|
temperature=temperature,
|
|
top_p=top_p,
|
|
user=user,
|
|
)
|
|
return await self._openai_client.completions.create(**params)
|
|
|
|
async def openai_chat_completion(
|
|
self,
|
|
model: str,
|
|
messages: list[OpenAIMessageParam],
|
|
frequency_penalty: float | None = None,
|
|
function_call: str | dict[str, Any] | None = None,
|
|
functions: list[dict[str, Any]] | None = None,
|
|
logit_bias: dict[str, float] | None = None,
|
|
logprobs: bool | None = None,
|
|
max_completion_tokens: int | None = None,
|
|
max_tokens: int | None = None,
|
|
n: int | None = None,
|
|
parallel_tool_calls: bool | None = None,
|
|
presence_penalty: float | None = None,
|
|
response_format: OpenAIResponseFormatParam | None = None,
|
|
seed: int | None = None,
|
|
stop: str | list[str] | None = None,
|
|
stream: bool | None = None,
|
|
stream_options: dict[str, Any] | None = None,
|
|
temperature: float | None = None,
|
|
tool_choice: str | dict[str, Any] | None = None,
|
|
tools: list[dict[str, Any]] | None = None,
|
|
top_logprobs: int | None = None,
|
|
top_p: float | None = None,
|
|
user: str | None = None,
|
|
) -> OpenAIChatCompletion | AsyncIterator[OpenAIChatCompletionChunk]:
|
|
model_id = (await self.model_store.get_model(model)).provider_resource_id
|
|
if model_id.startswith("openai/"):
|
|
model_id = model_id[len("openai/") :]
|
|
params = await prepare_openai_completion_params(
|
|
model=model_id,
|
|
messages=messages,
|
|
frequency_penalty=frequency_penalty,
|
|
function_call=function_call,
|
|
functions=functions,
|
|
logit_bias=logit_bias,
|
|
logprobs=logprobs,
|
|
max_completion_tokens=max_completion_tokens,
|
|
max_tokens=max_tokens,
|
|
n=n,
|
|
parallel_tool_calls=parallel_tool_calls,
|
|
presence_penalty=presence_penalty,
|
|
response_format=response_format,
|
|
seed=seed,
|
|
stop=stop,
|
|
stream=stream,
|
|
stream_options=stream_options,
|
|
temperature=temperature,
|
|
tool_choice=tool_choice,
|
|
tools=tools,
|
|
top_logprobs=top_logprobs,
|
|
top_p=top_p,
|
|
user=user,
|
|
)
|
|
return await self._openai_client.chat.completions.create(**params)
|
|
|
|
async def openai_embeddings(
|
|
self,
|
|
model: str,
|
|
input: str | list[str],
|
|
encoding_format: str | None = "float",
|
|
dimensions: int | None = None,
|
|
user: str | None = None,
|
|
) -> OpenAIEmbeddingsResponse:
|
|
model_id = (await self.model_store.get_model(model)).provider_resource_id
|
|
if model_id.startswith("openai/"):
|
|
model_id = model_id[len("openai/") :]
|
|
|
|
# Prepare parameters for OpenAI embeddings API
|
|
params = {
|
|
"model": model_id,
|
|
"input": input,
|
|
}
|
|
|
|
if encoding_format is not None:
|
|
params["encoding_format"] = encoding_format
|
|
if dimensions is not None:
|
|
params["dimensions"] = dimensions
|
|
if user is not None:
|
|
params["user"] = user
|
|
|
|
# Call OpenAI embeddings API
|
|
response = await self._openai_client.embeddings.create(**params)
|
|
|
|
data = []
|
|
for i, embedding_data in enumerate(response.data):
|
|
data.append(
|
|
OpenAIEmbeddingData(
|
|
embedding=embedding_data.embedding,
|
|
index=i,
|
|
)
|
|
)
|
|
|
|
usage = OpenAIEmbeddingUsage(
|
|
prompt_tokens=response.usage.prompt_tokens,
|
|
total_tokens=response.usage.total_tokens,
|
|
)
|
|
|
|
return OpenAIEmbeddingsResponse(
|
|
data=data,
|
|
model=response.model,
|
|
usage=usage,
|
|
)
|