llama-stack/llama_stack/providers/remote/inference/tgi/config.py
Ihar Hrachyshka 9e6561a1ec
chore: enable pyupgrade fixes (#1806)
# What does this PR do?

The goal of this PR is code base modernization.

Schema reflection code needed a minor adjustment to handle UnionTypes
and collections.abc.AsyncIterator. (Both are preferred for latest Python
releases.)

Note to reviewers: almost all changes here are automatically generated
by pyupgrade. Some additional unused imports were cleaned up. The only
change worth of note can be found under `docs/openapi_generator` and
`llama_stack/strong_typing/schema.py` where reflection code was updated
to deal with "newer" types.

Signed-off-by: Ihar Hrachyshka <ihar.hrachyshka@gmail.com>
2025-05-01 14:23:50 -07:00

69 lines
2.1 KiB
Python

# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from pydantic import BaseModel, Field, SecretStr
from llama_stack.schema_utils import json_schema_type
@json_schema_type
class TGIImplConfig(BaseModel):
url: str = Field(
description="The URL for the TGI serving endpoint",
)
@classmethod
def sample_run_config(cls, url: str = "${env.TGI_URL}", **kwargs):
return {
"url": url,
}
@json_schema_type
class InferenceEndpointImplConfig(BaseModel):
endpoint_name: str = Field(
description="The name of the Hugging Face Inference Endpoint in the format of '{namespace}/{endpoint_name}' (e.g. 'my-cool-org/meta-llama-3-1-8b-instruct-rce'). Namespace is optional and will default to the user account if not provided.",
)
api_token: SecretStr | None = Field(
default=None,
description="Your Hugging Face user access token (will default to locally saved token if not provided)",
)
@classmethod
def sample_run_config(
cls,
endpoint_name: str = "${env.INFERENCE_ENDPOINT_NAME}",
api_token: str = "${env.HF_API_TOKEN}",
**kwargs,
):
return {
"endpoint_name": endpoint_name,
"api_token": api_token,
}
@json_schema_type
class InferenceAPIImplConfig(BaseModel):
huggingface_repo: str = Field(
description="The model ID of the model on the Hugging Face Hub (e.g. 'meta-llama/Meta-Llama-3.1-70B-Instruct')",
)
api_token: SecretStr | None = Field(
default=None,
description="Your Hugging Face user access token (will default to locally saved token if not provided)",
)
@classmethod
def sample_run_config(
cls,
repo: str = "${env.INFERENCE_MODEL}",
api_token: str = "${env.HF_API_TOKEN}",
**kwargs,
):
return {
"huggingface_repo": repo,
"api_token": api_token,
}