forked from phoenix-oss/llama-stack-mirror
# What does this PR do? - as title, cleaning up `import *`'s - upgrade tests to make them more robust to bad model outputs - remove import *'s in llama_stack/apis/* (skip __init__ modules) <img width="465" alt="image" src="https://github.com/user-attachments/assets/d8339c13-3b40-4ba5-9c53-0d2329726ee2" /> - run `sh run_openapi_generator.sh`, no types gets affected ## Test Plan ### Providers Tests **agents** ``` pytest -v -s llama_stack/providers/tests/agents/test_agents.py -m "together" --safety-shield meta-llama/Llama-Guard-3-8B --inference-model meta-llama/Llama-3.1-405B-Instruct-FP8 ``` **inference** ```bash # meta-reference torchrun $CONDA_PREFIX/bin/pytest -v -s -k "meta_reference" --inference-model="meta-llama/Llama-3.1-8B-Instruct" ./llama_stack/providers/tests/inference/test_text_inference.py torchrun $CONDA_PREFIX/bin/pytest -v -s -k "meta_reference" --inference-model="meta-llama/Llama-3.2-11B-Vision-Instruct" ./llama_stack/providers/tests/inference/test_vision_inference.py # together pytest -v -s -k "together" --inference-model="meta-llama/Llama-3.1-8B-Instruct" ./llama_stack/providers/tests/inference/test_text_inference.py pytest -v -s -k "together" --inference-model="meta-llama/Llama-3.2-11B-Vision-Instruct" ./llama_stack/providers/tests/inference/test_vision_inference.py pytest ./llama_stack/providers/tests/inference/test_prompt_adapter.py ``` **safety** ``` pytest -v -s llama_stack/providers/tests/safety/test_safety.py -m together --safety-shield meta-llama/Llama-Guard-3-8B ``` **memory** ``` pytest -v -s llama_stack/providers/tests/memory/test_memory.py -m "sentence_transformers" --env EMBEDDING_DIMENSION=384 ``` **scoring** ``` pytest -v -s -m llm_as_judge_scoring_together_inference llama_stack/providers/tests/scoring/test_scoring.py --judge-model meta-llama/Llama-3.2-3B-Instruct pytest -v -s -m basic_scoring_together_inference llama_stack/providers/tests/scoring/test_scoring.py pytest -v -s -m braintrust_scoring_together_inference llama_stack/providers/tests/scoring/test_scoring.py ``` **datasetio** ``` pytest -v -s -m localfs llama_stack/providers/tests/datasetio/test_datasetio.py pytest -v -s -m huggingface llama_stack/providers/tests/datasetio/test_datasetio.py ``` **eval** ``` pytest -v -s -m meta_reference_eval_together_inference llama_stack/providers/tests/eval/test_eval.py pytest -v -s -m meta_reference_eval_together_inference_huggingface_datasetio llama_stack/providers/tests/eval/test_eval.py ``` ### Client-SDK Tests ``` LLAMA_STACK_BASE_URL=http://localhost:5000 pytest -v ./tests/client-sdk ``` ### llama-stack-apps ``` PORT=5000 LOCALHOST=localhost python -m examples.agents.hello $LOCALHOST $PORT python -m examples.agents.inflation $LOCALHOST $PORT python -m examples.agents.podcast_transcript $LOCALHOST $PORT python -m examples.agents.rag_as_attachments $LOCALHOST $PORT python -m examples.agents.rag_with_memory_bank $LOCALHOST $PORT python -m examples.safety.llama_guard_demo_mm $LOCALHOST $PORT python -m examples.agents.e2e_loop_with_custom_tools $LOCALHOST $PORT # Vision model python -m examples.interior_design_assistant.app python -m examples.agent_store.app $LOCALHOST $PORT ``` ### CLI ``` which llama llama model prompt-format -m Llama3.2-11B-Vision-Instruct llama model list llama stack list-apis llama stack list-providers inference llama stack build --template ollama --image-type conda ``` ### Distributions Tests **ollama** ``` llama stack build --template ollama --image-type conda ollama run llama3.2:1b-instruct-fp16 llama stack run ./llama_stack/templates/ollama/run.yaml --env INFERENCE_MODEL=meta-llama/Llama-3.2-1B-Instruct ``` **fireworks** ``` llama stack build --template fireworks --image-type conda llama stack run ./llama_stack/templates/fireworks/run.yaml ``` **together** ``` llama stack build --template together --image-type conda llama stack run ./llama_stack/templates/together/run.yaml ``` **tgi** ``` llama stack run ./llama_stack/templates/tgi/run.yaml --env TGI_URL=http://0.0.0.0:5009 --env INFERENCE_MODEL=meta-llama/Llama-3.1-8B-Instruct ``` ## Sources Please link relevant resources if necessary. ## Before submitting - [ ] This PR fixes a typo or improves the docs (you can dismiss the other checks if that's the case). - [ ] Ran pre-commit to handle lint / formatting issues. - [ ] Read the [contributor guideline](https://github.com/meta-llama/llama-stack/blob/main/CONTRIBUTING.md), Pull Request section? - [ ] Updated relevant documentation. - [ ] Wrote necessary unit or integration tests.
192 lines
6.6 KiB
Python
192 lines
6.6 KiB
Python
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
|
# All rights reserved.
|
|
#
|
|
# This source code is licensed under the terms described in the LICENSE file in
|
|
# the root directory of this source tree.
|
|
|
|
import uuid
|
|
|
|
import pytest
|
|
|
|
from llama_stack.apis.memory import MemoryBankDocument, QueryDocumentsResponse
|
|
|
|
from llama_stack.apis.memory_banks import (
|
|
MemoryBank,
|
|
MemoryBanks,
|
|
VectorMemoryBankParams,
|
|
)
|
|
|
|
# How to run this test:
|
|
#
|
|
# pytest llama_stack/providers/tests/memory/test_memory.py
|
|
# -m "sentence_transformers" --env EMBEDDING_DIMENSION=384
|
|
# -v -s --tb=short --disable-warnings
|
|
|
|
|
|
@pytest.fixture
|
|
def sample_documents():
|
|
return [
|
|
MemoryBankDocument(
|
|
document_id="doc1",
|
|
content="Python is a high-level programming language.",
|
|
metadata={"category": "programming", "difficulty": "beginner"},
|
|
),
|
|
MemoryBankDocument(
|
|
document_id="doc2",
|
|
content="Machine learning is a subset of artificial intelligence.",
|
|
metadata={"category": "AI", "difficulty": "advanced"},
|
|
),
|
|
MemoryBankDocument(
|
|
document_id="doc3",
|
|
content="Data structures are fundamental to computer science.",
|
|
metadata={"category": "computer science", "difficulty": "intermediate"},
|
|
),
|
|
MemoryBankDocument(
|
|
document_id="doc4",
|
|
content="Neural networks are inspired by biological neural networks.",
|
|
metadata={"category": "AI", "difficulty": "advanced"},
|
|
),
|
|
]
|
|
|
|
|
|
async def register_memory_bank(
|
|
banks_impl: MemoryBanks, embedding_model: str
|
|
) -> MemoryBank:
|
|
bank_id = f"test_bank_{uuid.uuid4().hex}"
|
|
return await banks_impl.register_memory_bank(
|
|
memory_bank_id=bank_id,
|
|
params=VectorMemoryBankParams(
|
|
embedding_model=embedding_model,
|
|
chunk_size_in_tokens=512,
|
|
overlap_size_in_tokens=64,
|
|
),
|
|
)
|
|
|
|
|
|
class TestMemory:
|
|
@pytest.mark.asyncio
|
|
async def test_banks_list(self, memory_stack, embedding_model):
|
|
_, banks_impl = memory_stack
|
|
|
|
# Register a test bank
|
|
registered_bank = await register_memory_bank(banks_impl, embedding_model)
|
|
|
|
try:
|
|
# Verify our bank shows up in list
|
|
response = await banks_impl.list_memory_banks()
|
|
assert isinstance(response, list)
|
|
assert any(
|
|
bank.memory_bank_id == registered_bank.memory_bank_id
|
|
for bank in response
|
|
)
|
|
finally:
|
|
# Clean up
|
|
await banks_impl.unregister_memory_bank(registered_bank.memory_bank_id)
|
|
|
|
# Verify our bank was removed
|
|
response = await banks_impl.list_memory_banks()
|
|
assert all(
|
|
bank.memory_bank_id != registered_bank.memory_bank_id for bank in response
|
|
)
|
|
|
|
@pytest.mark.asyncio
|
|
async def test_banks_register(self, memory_stack, embedding_model):
|
|
_, banks_impl = memory_stack
|
|
|
|
bank_id = f"test_bank_{uuid.uuid4().hex}"
|
|
|
|
try:
|
|
# Register initial bank
|
|
await banks_impl.register_memory_bank(
|
|
memory_bank_id=bank_id,
|
|
params=VectorMemoryBankParams(
|
|
embedding_model=embedding_model,
|
|
chunk_size_in_tokens=512,
|
|
overlap_size_in_tokens=64,
|
|
),
|
|
)
|
|
|
|
# Verify our bank exists
|
|
response = await banks_impl.list_memory_banks()
|
|
assert isinstance(response, list)
|
|
assert any(bank.memory_bank_id == bank_id for bank in response)
|
|
|
|
# Try registering same bank again
|
|
await banks_impl.register_memory_bank(
|
|
memory_bank_id=bank_id,
|
|
params=VectorMemoryBankParams(
|
|
embedding_model=embedding_model,
|
|
chunk_size_in_tokens=512,
|
|
overlap_size_in_tokens=64,
|
|
),
|
|
)
|
|
|
|
# Verify still only one instance of our bank
|
|
response = await banks_impl.list_memory_banks()
|
|
assert isinstance(response, list)
|
|
assert (
|
|
len([bank for bank in response if bank.memory_bank_id == bank_id]) == 1
|
|
)
|
|
finally:
|
|
# Clean up
|
|
await banks_impl.unregister_memory_bank(bank_id)
|
|
|
|
@pytest.mark.asyncio
|
|
async def test_query_documents(
|
|
self, memory_stack, embedding_model, sample_documents
|
|
):
|
|
memory_impl, banks_impl = memory_stack
|
|
|
|
with pytest.raises(ValueError):
|
|
await memory_impl.insert_documents("test_bank", sample_documents)
|
|
|
|
registered_bank = await register_memory_bank(banks_impl, embedding_model)
|
|
await memory_impl.insert_documents(
|
|
registered_bank.memory_bank_id, sample_documents
|
|
)
|
|
|
|
query1 = "programming language"
|
|
response1 = await memory_impl.query_documents(
|
|
registered_bank.memory_bank_id, query1
|
|
)
|
|
assert_valid_response(response1)
|
|
assert any("Python" in chunk.content for chunk in response1.chunks)
|
|
|
|
# Test case 3: Query with semantic similarity
|
|
query3 = "AI and brain-inspired computing"
|
|
response3 = await memory_impl.query_documents(
|
|
registered_bank.memory_bank_id, query3
|
|
)
|
|
assert_valid_response(response3)
|
|
assert any(
|
|
"neural networks" in chunk.content.lower() for chunk in response3.chunks
|
|
)
|
|
|
|
# Test case 4: Query with limit on number of results
|
|
query4 = "computer"
|
|
params4 = {"max_chunks": 2}
|
|
response4 = await memory_impl.query_documents(
|
|
registered_bank.memory_bank_id, query4, params4
|
|
)
|
|
assert_valid_response(response4)
|
|
assert len(response4.chunks) <= 2
|
|
|
|
# Test case 5: Query with threshold on similarity score
|
|
query5 = "quantum computing" # Not directly related to any document
|
|
params5 = {"score_threshold": 0.01}
|
|
response5 = await memory_impl.query_documents(
|
|
registered_bank.memory_bank_id, query5, params5
|
|
)
|
|
assert_valid_response(response5)
|
|
print("The scores are:", response5.scores)
|
|
assert all(score >= 0.01 for score in response5.scores)
|
|
|
|
|
|
def assert_valid_response(response: QueryDocumentsResponse):
|
|
assert isinstance(response, QueryDocumentsResponse)
|
|
assert len(response.chunks) > 0
|
|
assert len(response.scores) > 0
|
|
assert len(response.chunks) == len(response.scores)
|
|
for chunk in response.chunks:
|
|
assert isinstance(chunk.content, str)
|
|
assert chunk.document_id is not None
|