Composable building blocks to build Llama Apps
Find a file
Ben Browning b42eb1ccbc
fix: Responses API: handle type=None in streaming tool calls (#2166)
# What does this PR do?

In the Responses API, we convert incoming response requests to chat
completion requests. When streaming the resulting chunks of those chat
completion requests, inference providers that use OpenAI clients will
often return a `type=None` value in the tool call parts of the response.
This causes issues when we try to dump and load that response into our
pydantic model, because type cannot be None in the Responses API model
we're loading these into.

So, strip the "type" field, if present, off those chat completion tool
call results before dumping and loading them as our typed pydantic
models, which will apply our default value for that type field.

## Test Plan

This was found via manual testing of the Responses API with codex, where
I was getting errors in some tool call situations. I added a unit test
to simulate this scenario and verify the fix, as well as manual codex
testing to verify the fix.

Signed-off-by: Ben Browning <bbrownin@redhat.com>
2025-05-14 14:16:33 -07:00
.github chore: enforce no git tags or branches in external github actions (#2159) 2025-05-14 20:40:06 +02:00
docs docs: Clarify kfp provider is both inline and remote (#2144) 2025-05-14 09:37:07 +02:00
llama_stack fix: Responses API: handle type=None in streaming tool calls (#2166) 2025-05-14 14:16:33 -07:00
rfcs chore: remove straggler references to llama-models (#1345) 2025-03-01 14:26:03 -08:00
scripts chore: enforce no git tags or branches in external github actions (#2159) 2025-05-14 20:40:06 +02:00
tests fix: Responses API: handle type=None in streaming tool calls (#2166) 2025-05-14 14:16:33 -07:00
.coveragerc chore: exclude test, provider, and template directories from coverage (#2028) 2025-04-25 12:16:57 -07:00
.gitignore build: remove .python-version (#1513) 2025-03-12 20:08:24 -07:00
.pre-commit-config.yaml chore: enforce no git tags or branches in external github actions (#2159) 2025-05-14 20:40:06 +02:00
.readthedocs.yaml first version of readthedocs (#278) 2024-10-22 10:15:58 +05:30
CHANGELOG.md docs: Update changelog to include recent releases (#2108) 2025-05-06 14:42:06 -07:00
CODE_OF_CONDUCT.md Initial commit 2024-07-23 08:32:33 -07:00
CONTRIBUTING.md docs: revamp testing documentation (#2155) 2025-05-13 11:28:29 -07:00
install.sh fix(installer): harden install.sh for Podman macOS (#2068) 2025-05-05 00:31:58 -07:00
LICENSE Update LICENSE (#47) 2024-08-29 07:39:50 -07:00
MANIFEST.in feat: introduce llama4 support (#1877) 2025-04-05 11:53:35 -07:00
pyproject.toml build: Bump version to 0.2.6 2025-05-12 18:02:05 +00:00
README.md docs: Add link to Discord to README (#2126) 2025-05-10 18:32:44 -07:00
requirements.txt chore: rehydrate requirements.txt (#2146) 2025-05-12 12:45:35 -07:00
SECURITY.md Create SECURITY.md 2024-10-08 13:30:40 -04:00
uv.lock build: Bump version to 0.2.6 2025-05-12 18:02:05 +00:00

Llama Stack

PyPI version PyPI - Downloads License Discord Unit Tests Integration Tests

Quick Start | Documentation | Colab Notebook | Discord

🎉 Llama 4 Support 🎉

We released Version 0.2.0 with support for the Llama 4 herd of models released by Meta.

👋 Click here to see how to run Llama 4 models on Llama Stack


Note you need 8xH100 GPU-host to run these models

pip install -U llama_stack

MODEL="Llama-4-Scout-17B-16E-Instruct"
# get meta url from llama.com
llama model download --source meta --model-id $MODEL --meta-url <META_URL>

# start a llama stack server
INFERENCE_MODEL=meta-llama/$MODEL llama stack build --run --template meta-reference-gpu

# install client to interact with the server
pip install llama-stack-client

CLI

# Run a chat completion
llama-stack-client --endpoint http://localhost:8321 \
inference chat-completion \
--model-id meta-llama/$MODEL \
--message "write a haiku for meta's llama 4 models"

ChatCompletionResponse(
    completion_message=CompletionMessage(content="Whispers in code born\nLlama's gentle, wise heartbeat\nFuture's soft unfold", role='assistant', stop_reason='end_of_turn', tool_calls=[]),
    logprobs=None,
    metrics=[Metric(metric='prompt_tokens', value=21.0, unit=None), Metric(metric='completion_tokens', value=28.0, unit=None), Metric(metric='total_tokens', value=49.0, unit=None)]
)

Python SDK

from llama_stack_client import LlamaStackClient

client = LlamaStackClient(base_url=f"http://localhost:8321")

model_id = "meta-llama/Llama-4-Scout-17B-16E-Instruct"
prompt = "Write a haiku about coding"

print(f"User> {prompt}")
response = client.inference.chat_completion(
    model_id=model_id,
    messages=[
        {"role": "system", "content": "You are a helpful assistant."},
        {"role": "user", "content": prompt},
    ],
)
print(f"Assistant> {response.completion_message.content}")

As more providers start supporting Llama 4, you can use them in Llama Stack as well. We are adding to the list. Stay tuned!

🚀 One-Line Installer 🚀

To try Llama Stack locally, run:

curl -LsSf https://github.com/meta-llama/llama-stack/raw/main/install.sh | sh

Overview

Llama Stack standardizes the core building blocks that simplify AI application development. It codifies best practices across the Llama ecosystem. More specifically, it provides

  • Unified API layer for Inference, RAG, Agents, Tools, Safety, Evals, and Telemetry.
  • Plugin architecture to support the rich ecosystem of different API implementations in various environments, including local development, on-premises, cloud, and mobile.
  • Prepackaged verified distributions which offer a one-stop solution for developers to get started quickly and reliably in any environment.
  • Multiple developer interfaces like CLI and SDKs for Python, Typescript, iOS, and Android.
  • Standalone applications as examples for how to build production-grade AI applications with Llama Stack.
Llama Stack

Llama Stack Benefits

  • Flexible Options: Developers can choose their preferred infrastructure without changing APIs and enjoy flexible deployment choices.
  • Consistent Experience: With its unified APIs, Llama Stack makes it easier to build, test, and deploy AI applications with consistent application behavior.
  • Robust Ecosystem: Llama Stack is already integrated with distribution partners (cloud providers, hardware vendors, and AI-focused companies) that offer tailored infrastructure, software, and services for deploying Llama models.

By reducing friction and complexity, Llama Stack empowers developers to focus on what they do best: building transformative generative AI applications.

API Providers

Here is a list of the various API providers and available distributions that can help developers get started easily with Llama Stack.

API Provider Builder Environments Agents Inference Memory Safety Telemetry
Meta Reference Single Node
SambaNova Hosted
Cerebras Hosted
Fireworks Hosted
AWS Bedrock Hosted
Together Hosted
Groq Hosted
Ollama Single Node
TGI Hosted and Single Node
NVIDIA NIM Hosted and Single Node
Chroma Single Node
PG Vector Single Node
PyTorch ExecuTorch On-device iOS
vLLM Hosted and Single Node
OpenAI Hosted
Anthropic Hosted
Gemini Hosted
watsonx Hosted

Distributions

A Llama Stack Distribution (or "distro") is a pre-configured bundle of provider implementations for each API component. Distributions make it easy to get started with a specific deployment scenario - you can begin with a local development setup (eg. ollama) and seamlessly transition to production (eg. Fireworks) without changing your application code. Here are some of the distributions we support:

Distribution Llama Stack Docker Start This Distribution
Meta Reference llamastack/distribution-meta-reference-gpu Guide
SambaNova llamastack/distribution-sambanova Guide
Cerebras llamastack/distribution-cerebras Guide
Ollama llamastack/distribution-ollama Guide
TGI llamastack/distribution-tgi Guide
Together llamastack/distribution-together Guide
Fireworks llamastack/distribution-fireworks Guide
vLLM llamastack/distribution-remote-vllm Guide

Documentation

Please checkout our Documentation page for more details.

Llama Stack Client SDKs

Language Client SDK Package
Python llama-stack-client-python PyPI version
Swift llama-stack-client-swift Swift Package Index
Typescript llama-stack-client-typescript NPM version
Kotlin llama-stack-client-kotlin Maven version

Check out our client SDKs for connecting to a Llama Stack server in your preferred language, you can choose from python, typescript, swift, and kotlin programming languages to quickly build your applications.

You can find more example scripts with client SDKs to talk with the Llama Stack server in our llama-stack-apps repo.