forked from phoenix-oss/llama-stack-mirror
329 lines
12 KiB
Python
329 lines
12 KiB
Python
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
|
# All rights reserved.
|
|
#
|
|
# This source code is licensed under the terms described in the LICENSE file in
|
|
# the root directory of this source tree.
|
|
|
|
import uuid
|
|
from typing import AsyncGenerator, Dict
|
|
|
|
import httpx
|
|
|
|
from llama_models.llama3_1.api.datatypes import (
|
|
BuiltinTool,
|
|
CompletionMessage,
|
|
Message,
|
|
StopReason,
|
|
ToolCall,
|
|
)
|
|
from llama_models.llama3_1.api.tool_utils import ToolUtils
|
|
from llama_models.sku_list import resolve_model
|
|
from llama_toolchain.distribution.datatypes import Api, ProviderSpec
|
|
from llama_toolchain.inference.api import (
|
|
ChatCompletionRequest,
|
|
ChatCompletionResponse,
|
|
ChatCompletionResponseEvent,
|
|
ChatCompletionResponseEventType,
|
|
ChatCompletionResponseStreamChunk,
|
|
CompletionRequest,
|
|
Inference,
|
|
ToolCallDelta,
|
|
ToolCallParseStatus,
|
|
)
|
|
from ollama import AsyncClient
|
|
|
|
from .config import OllamaImplConfig
|
|
|
|
# TODO: Eventually this will move to the llama cli model list command
|
|
# mapping of Model SKUs to ollama models
|
|
OLLAMA_SUPPORTED_SKUS = {
|
|
"Meta-Llama3.1-8B-Instruct": "llama3.1:8b-instruct-fp16",
|
|
"Meta-Llama3.1-70B-Instruct": "llama3.1:70b-instruct-fp16",
|
|
}
|
|
|
|
|
|
async def get_provider_impl(
|
|
config: OllamaImplConfig, _deps: Dict[Api, ProviderSpec]
|
|
) -> Inference:
|
|
assert isinstance(
|
|
config, OllamaImplConfig
|
|
), f"Unexpected config type: {type(config)}"
|
|
impl = OllamaInference(config)
|
|
await impl.initialize()
|
|
return impl
|
|
|
|
|
|
class OllamaInference(Inference):
|
|
def __init__(self, config: OllamaImplConfig) -> None:
|
|
self.config = config
|
|
|
|
@property
|
|
def client(self) -> AsyncClient:
|
|
return AsyncClient(host=self.config.url)
|
|
|
|
async def initialize(self) -> None:
|
|
try:
|
|
await self.client.ps()
|
|
except httpx.ConnectError:
|
|
raise RuntimeError(
|
|
"Ollama Server is not running, start it using `ollama serve` in a separate terminal"
|
|
)
|
|
|
|
async def shutdown(self) -> None:
|
|
pass
|
|
|
|
async def completion(self, request: CompletionRequest) -> AsyncGenerator:
|
|
raise NotImplementedError()
|
|
|
|
def _messages_to_ollama_messages(self, messages: list[Message]) -> list:
|
|
ollama_messages = []
|
|
for message in messages:
|
|
if message.role == "ipython":
|
|
role = "tool"
|
|
else:
|
|
role = message.role
|
|
ollama_messages.append({"role": role, "content": message.content})
|
|
|
|
return ollama_messages
|
|
|
|
def resolve_ollama_model(self, model_name: str) -> str:
|
|
model = resolve_model(model_name)
|
|
assert (
|
|
model is not None
|
|
and model.descriptor(shorten_default_variant=True) in OLLAMA_SUPPORTED_SKUS
|
|
), f"Unsupported model: {model_name}, use one of the supported models: {','.join(OLLAMA_SUPPORTED_SKUS.keys())}"
|
|
|
|
return OLLAMA_SUPPORTED_SKUS.get(model.descriptor(shorten_default_variant=True))
|
|
|
|
def get_ollama_chat_options(self, request: ChatCompletionRequest) -> dict:
|
|
options = {}
|
|
if request.sampling_params is not None:
|
|
for attr in {"temperature", "top_p", "top_k", "max_tokens"}:
|
|
if getattr(request.sampling_params, attr):
|
|
options[attr] = getattr(request.sampling_params, attr)
|
|
if (
|
|
request.sampling_params.repetition_penalty is not None
|
|
and request.sampling_params.repetition_penalty != 1.0
|
|
):
|
|
options["repeat_penalty"] = request.sampling_params.repetition_penalty
|
|
|
|
return options
|
|
|
|
async def chat_completion(self, request: ChatCompletionRequest) -> AsyncGenerator:
|
|
# accumulate sampling params and other options to pass to ollama
|
|
options = self.get_ollama_chat_options(request)
|
|
ollama_model = self.resolve_ollama_model(request.model)
|
|
|
|
res = await self.client.ps()
|
|
need_model_pull = True
|
|
for r in res["models"]:
|
|
if ollama_model == r["model"]:
|
|
need_model_pull = False
|
|
break
|
|
|
|
if need_model_pull:
|
|
print(f"Pulling model: {ollama_model}")
|
|
status = await self.client.pull(ollama_model)
|
|
assert (
|
|
status["status"] == "success"
|
|
), f"Failed to pull model {self.model} in ollama"
|
|
|
|
if not request.stream:
|
|
r = await self.client.chat(
|
|
model=ollama_model,
|
|
messages=self._messages_to_ollama_messages(request.messages),
|
|
stream=False,
|
|
options=options,
|
|
)
|
|
stop_reason = None
|
|
if r["done"]:
|
|
if r["done_reason"] == "stop":
|
|
stop_reason = StopReason.end_of_turn
|
|
elif r["done_reason"] == "length":
|
|
stop_reason = StopReason.out_of_tokens
|
|
|
|
completion_message = decode_assistant_message_from_content(
|
|
r["message"]["content"],
|
|
stop_reason,
|
|
)
|
|
yield ChatCompletionResponse(
|
|
completion_message=completion_message,
|
|
logprobs=None,
|
|
)
|
|
else:
|
|
yield ChatCompletionResponseStreamChunk(
|
|
event=ChatCompletionResponseEvent(
|
|
event_type=ChatCompletionResponseEventType.start,
|
|
delta="",
|
|
)
|
|
)
|
|
stream = await self.client.chat(
|
|
model=ollama_model,
|
|
messages=self._messages_to_ollama_messages(request.messages),
|
|
stream=True,
|
|
options=options,
|
|
)
|
|
|
|
buffer = ""
|
|
ipython = False
|
|
stop_reason = None
|
|
|
|
async for chunk in stream:
|
|
if chunk["done"]:
|
|
if stop_reason is None and chunk["done_reason"] == "stop":
|
|
stop_reason = StopReason.end_of_turn
|
|
elif stop_reason is None and chunk["done_reason"] == "length":
|
|
stop_reason = StopReason.out_of_tokens
|
|
break
|
|
|
|
text = chunk["message"]["content"]
|
|
|
|
# check if its a tool call ( aka starts with <|python_tag|> )
|
|
if not ipython and text.startswith("<|python_tag|>"):
|
|
ipython = True
|
|
yield ChatCompletionResponseStreamChunk(
|
|
event=ChatCompletionResponseEvent(
|
|
event_type=ChatCompletionResponseEventType.progress,
|
|
delta=ToolCallDelta(
|
|
content="",
|
|
parse_status=ToolCallParseStatus.started,
|
|
),
|
|
)
|
|
)
|
|
buffer += text
|
|
continue
|
|
|
|
if ipython:
|
|
if text == "<|eot_id|>":
|
|
stop_reason = StopReason.end_of_turn
|
|
text = ""
|
|
continue
|
|
elif text == "<|eom_id|>":
|
|
stop_reason = StopReason.end_of_message
|
|
text = ""
|
|
continue
|
|
|
|
buffer += text
|
|
delta = ToolCallDelta(
|
|
content=text,
|
|
parse_status=ToolCallParseStatus.in_progress,
|
|
)
|
|
|
|
yield ChatCompletionResponseStreamChunk(
|
|
event=ChatCompletionResponseEvent(
|
|
event_type=ChatCompletionResponseEventType.progress,
|
|
delta=delta,
|
|
stop_reason=stop_reason,
|
|
)
|
|
)
|
|
else:
|
|
buffer += text
|
|
yield ChatCompletionResponseStreamChunk(
|
|
event=ChatCompletionResponseEvent(
|
|
event_type=ChatCompletionResponseEventType.progress,
|
|
delta=text,
|
|
stop_reason=stop_reason,
|
|
)
|
|
)
|
|
|
|
# parse tool calls and report errors
|
|
message = decode_assistant_message_from_content(buffer, stop_reason)
|
|
parsed_tool_calls = len(message.tool_calls) > 0
|
|
if ipython and not parsed_tool_calls:
|
|
yield ChatCompletionResponseStreamChunk(
|
|
event=ChatCompletionResponseEvent(
|
|
event_type=ChatCompletionResponseEventType.progress,
|
|
delta=ToolCallDelta(
|
|
content="",
|
|
parse_status=ToolCallParseStatus.failure,
|
|
),
|
|
stop_reason=stop_reason,
|
|
)
|
|
)
|
|
|
|
for tool_call in message.tool_calls:
|
|
yield ChatCompletionResponseStreamChunk(
|
|
event=ChatCompletionResponseEvent(
|
|
event_type=ChatCompletionResponseEventType.progress,
|
|
delta=ToolCallDelta(
|
|
content=tool_call,
|
|
parse_status=ToolCallParseStatus.success,
|
|
),
|
|
stop_reason=stop_reason,
|
|
)
|
|
)
|
|
|
|
yield ChatCompletionResponseStreamChunk(
|
|
event=ChatCompletionResponseEvent(
|
|
event_type=ChatCompletionResponseEventType.complete,
|
|
delta="",
|
|
stop_reason=stop_reason,
|
|
)
|
|
)
|
|
|
|
|
|
# TODO: Consolidate this with impl in llama-models
|
|
def decode_assistant_message_from_content(
|
|
content: str,
|
|
stop_reason: StopReason,
|
|
) -> CompletionMessage:
|
|
ipython = content.startswith("<|python_tag|>")
|
|
if ipython:
|
|
content = content[len("<|python_tag|>") :]
|
|
|
|
if content.endswith("<|eot_id|>"):
|
|
content = content[: -len("<|eot_id|>")]
|
|
stop_reason = StopReason.end_of_turn
|
|
elif content.endswith("<|eom_id|>"):
|
|
content = content[: -len("<|eom_id|>")]
|
|
stop_reason = StopReason.end_of_message
|
|
|
|
tool_name = None
|
|
tool_arguments = {}
|
|
|
|
custom_tool_info = ToolUtils.maybe_extract_custom_tool_call(content)
|
|
if custom_tool_info is not None:
|
|
tool_name, tool_arguments = custom_tool_info
|
|
# Sometimes when agent has custom tools alongside builin tools
|
|
# Agent responds for builtin tool calls in the format of the custom tools
|
|
# This code tries to handle that case
|
|
if tool_name in BuiltinTool.__members__:
|
|
tool_name = BuiltinTool[tool_name]
|
|
tool_arguments = {
|
|
"query": list(tool_arguments.values())[0],
|
|
}
|
|
else:
|
|
builtin_tool_info = ToolUtils.maybe_extract_builtin_tool_call(content)
|
|
if builtin_tool_info is not None:
|
|
tool_name, query = builtin_tool_info
|
|
tool_arguments = {
|
|
"query": query,
|
|
}
|
|
if tool_name in BuiltinTool.__members__:
|
|
tool_name = BuiltinTool[tool_name]
|
|
elif ipython:
|
|
tool_name = BuiltinTool.code_interpreter
|
|
tool_arguments = {
|
|
"code": content,
|
|
}
|
|
|
|
tool_calls = []
|
|
if tool_name is not None and tool_arguments is not None:
|
|
call_id = str(uuid.uuid4())
|
|
tool_calls.append(
|
|
ToolCall(
|
|
call_id=call_id,
|
|
tool_name=tool_name,
|
|
arguments=tool_arguments,
|
|
)
|
|
)
|
|
content = ""
|
|
|
|
if stop_reason is None:
|
|
stop_reason = StopReason.out_of_tokens
|
|
|
|
return CompletionMessage(
|
|
content=content,
|
|
stop_reason=stop_reason,
|
|
tool_calls=tool_calls,
|
|
)
|