Composable building blocks to build Llama Apps
Find a file
yyymeta b79e0435de
fix: avoid tensor memory error (#1688)
# What does this PR do?

we randomly get errors like the following, it's most likely due to
accessing an object that is already deallocated

```

E0318 12:55:24.472000 1562188 site-packages/torch/distributed/elastic/multiprocessing/api.py:732] Traceback (most recent call last):
E0318 12:55:24.472000 1562188 site-packages/torch/distributed/elastic/multiprocessing/api.py:732]   File "/home/yyy/.conda/envs/myenv/lib/python3.10/site-packages/torch/multiprocessing/spawn.py", line 90, in _wrap
E0318 12:55:24.472000 1562188 site-packages/torch/distributed/elastic/multiprocessing/api.py:732]     fn(i, *args)
E0318 12:55:24.472000 1562188 site-packages/torch/distributed/elastic/multiprocessing/api.py:732]   File "/home/yyy/.conda/envs/myenv/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/api.py", line 611, in _wrap
E0318 12:55:24.472000 1562188 site-packages/torch/distributed/elastic/multiprocessing/api.py:732]     ret = record(fn)(*args_)
E0318 12:55:24.472000 1562188 site-packages/torch/distributed/elastic/multiprocessing/api.py:732]   File "/home/yyy/.conda/envs/myenv/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/errors/__init__.py", line 355, in wrapper
E0318 12:55:24.472000 1562188 site-packages/torch/distributed/elastic/multiprocessing/api.py:732]     return f(*args, **kwargs)
E0318 12:55:24.472000 1562188 site-packages/torch/distributed/elastic/multiprocessing/api.py:732]   File "/home/yyy/internal-llama-stack/llama_stack/providers/inline/inference/meta_reference/parallel_utils.py", line 249, in worker_process_entrypoint
E0318 12:55:24.472000 1562188 site-packages/torch/distributed/elastic/multiprocessing/api.py:732]     task = req_gen.send(result)
E0318 12:55:24.472000 1562188 site-packages/torch/distributed/elastic/multiprocessing/api.py:732]   File "/home/yyy/internal-llama-stack/llama_stack/providers/inline/inference/meta_reference/parallel_utils.py", line 156, in retrieve_requests
E0318 12:55:24.472000 1562188 site-packages/torch/distributed/elastic/multiprocessing/api.py:732]     torch.distributed.broadcast_object_list(
E0318 12:55:24.472000 1562188 site-packages/torch/distributed/elastic/multiprocessing/api.py:732]   File "/home/yyy/.conda/envs/myenv/lib/python3.10/site-packages/torch/distributed/c10d_logger.py", line 81, in wrapper
E0318 12:55:24.472000 1562188 site-packages/torch/distributed/elastic/multiprocessing/api.py:732]     return func(*args, **kwargs)
E0318 12:55:24.472000 1562188 site-packages/torch/distributed/elastic/multiprocessing/api.py:732]   File "/home/yyy/.conda/envs/myenv/lib/python3.10/site-packages/torch/distributed/distributed_c10d.py", line 3504, in broadcast_object_list
E0318 12:55:24.472000 1562188 site-packages/torch/distributed/elastic/multiprocessing/api.py:732]     object_list[i] = _tensor_to_object(obj_view, obj_size, group)
E0318 12:55:24.472000 1562188 site-packages/torch/distributed/elastic/multiprocessing/api.py:732]   File "/home/yyy/.conda/envs/myenv/lib/python3.10/site-packages/torch/distributed/distributed_c10d.py", line 2961, in _tensor_to_object
E0318 12:55:24.472000 1562188 site-packages/torch/distributed/elastic/multiprocessing/api.py:732]     return _unpickler(io.BytesIO(buf)).load()
E0318 12:55:24.472000 1562188 site-packages/torch/distributed/elastic/multiprocessing/api.py:732] EOFError: Ran out of input
E0318 12:55:24.472000 1562188 site-packages/torch/distributed/elastic/multiprocessing/api.py:732]
Process SpawnProcess-1:
Traceback (most recent call last):
```

## Test Plan
start server

```
llama-stack-client eval run-benchmark mmmu_v1  --model-id meta-llama/Llama-4-17B-Omni-Instruct  --output-dir /tmp/mmmu_standard --num-examples 30
```

[//]: # (## Documentation)
2025-03-18 16:17:29 -07:00
.github ci: Add scheduled workflow to update changelog (#1503) 2025-03-18 14:39:22 -07:00
distributions feat: added nvidia as safety provider (#1248) 2025-03-17 14:39:23 -07:00
docs chore: fix mypy violations in post_training modules (#1548) 2025-03-18 14:58:16 -07:00
llama_stack fix: avoid tensor memory error (#1688) 2025-03-18 16:17:29 -07:00
rfcs chore: remove straggler references to llama-models (#1345) 2025-03-01 14:26:03 -08:00
scripts chore: enable ruff for ./scripts too (#1643) 2025-03-18 12:17:21 -07:00
tests feat: Qdrant inline provider (#1273) 2025-03-18 14:04:21 -07:00
.gitignore build: remove .python-version (#1513) 2025-03-12 20:08:24 -07:00
.pre-commit-config.yaml chore: consolidate scripts under ./scripts directory (#1646) 2025-03-17 17:56:30 -04:00
.readthedocs.yaml first version of readthedocs (#278) 2024-10-22 10:15:58 +05:30
CHANGELOG.md docs: Add v0.1.6 release notes to changelog (#1506) 2025-03-08 16:20:08 -08:00
CODE_OF_CONDUCT.md Initial commit 2024-07-23 08:32:33 -07:00
CONTRIBUTING.md docs: fix broken test path in CONTRIBUTING.md (#1679) 2025-03-18 13:39:46 -07:00
LICENSE Update LICENSE (#47) 2024-08-29 07:39:50 -07:00
MANIFEST.in build: include .md (#1482) 2025-03-07 12:10:52 -08:00
pyproject.toml chore: fix mypy violations in post_training modules (#1548) 2025-03-18 14:58:16 -07:00
README.md docs: remove redundant installation instructions (#1138) 2025-03-18 14:52:21 -07:00
requirements.txt ci: Bump version to 0.1.7 2025-03-14 15:21:26 -07:00
SECURITY.md Create SECURITY.md 2024-10-08 13:30:40 -04:00
uv.lock feat: Qdrant inline provider (#1273) 2025-03-18 14:04:21 -07:00

Llama Stack

PyPI version PyPI - Downloads License Discord Unit Tests Integration Tests

Quick Start | Documentation | Colab Notebook

Llama Stack standardizes the core building blocks that simplify AI application development. It codifies best practices across the Llama ecosystem. More specifically, it provides

  • Unified API layer for Inference, RAG, Agents, Tools, Safety, Evals, and Telemetry.
  • Plugin architecture to support the rich ecosystem of different API implementations in various environments, including local development, on-premises, cloud, and mobile.
  • Prepackaged verified distributions which offer a one-stop solution for developers to get started quickly and reliably in any environment.
  • Multiple developer interfaces like CLI and SDKs for Python, Typescript, iOS, and Android.
  • Standalone applications as examples for how to build production-grade AI applications with Llama Stack.
Llama Stack

Llama Stack Benefits

  • Flexible Options: Developers can choose their preferred infrastructure without changing APIs and enjoy flexible deployment choices.
  • Consistent Experience: With its unified APIs, Llama Stack makes it easier to build, test, and deploy AI applications with consistent application behavior.
  • Robust Ecosystem: Llama Stack is already integrated with distribution partners (cloud providers, hardware vendors, and AI-focused companies) that offer tailored infrastructure, software, and services for deploying Llama models.

By reducing friction and complexity, Llama Stack empowers developers to focus on what they do best: building transformative generative AI applications.

API Providers

Here is a list of the various API providers and available distributions that can help developers get started easily with Llama Stack.

API Provider Builder Environments Agents Inference Memory Safety Telemetry
Meta Reference Single Node
SambaNova Hosted
Cerebras Hosted
Fireworks Hosted
AWS Bedrock Hosted
Together Hosted
Groq Hosted
Ollama Single Node
TGI Hosted and Single Node
NVIDIA NIM Hosted and Single Node
Chroma Single Node
PG Vector Single Node
PyTorch ExecuTorch On-device iOS
vLLM Hosted and Single Node
OpenAI Hosted
Anthropic Hosted
Gemini Hosted

Distributions

A Llama Stack Distribution (or "distro") is a pre-configured bundle of provider implementations for each API component. Distributions make it easy to get started with a specific deployment scenario - you can begin with a local development setup (eg. ollama) and seamlessly transition to production (eg. Fireworks) without changing your application code. Here are some of the distributions we support:

Distribution Llama Stack Docker Start This Distribution
Meta Reference llamastack/distribution-meta-reference-gpu Guide
Meta Reference Quantized llamastack/distribution-meta-reference-quantized-gpu Guide
SambaNova llamastack/distribution-sambanova Guide
Cerebras llamastack/distribution-cerebras Guide
Ollama llamastack/distribution-ollama Guide
TGI llamastack/distribution-tgi Guide
Together llamastack/distribution-together Guide
Fireworks llamastack/distribution-fireworks Guide
vLLM llamastack/distribution-remote-vllm Guide

Documentation

Please checkout our Documentation page for more details.

Llama Stack Client SDKs

Language Client SDK Package
Python llama-stack-client-python PyPI version
Swift llama-stack-client-swift Swift Package Index
Typescript llama-stack-client-typescript NPM version
Kotlin llama-stack-client-kotlin Maven version

Check out our client SDKs for connecting to a Llama Stack server in your preferred language, you can choose from python, typescript, swift, and kotlin programming languages to quickly build your applications.

You can find more example scripts with client SDKs to talk with the Llama Stack server in our llama-stack-apps repo.