llama-stack/docs/openapi_generator/strong_typing/name.py
Ashwin Bharambe ec4fc800cc
[API Updates] Model / shield / memory-bank routing + agent persistence + support for private headers (#92)
This is yet another of those large PRs (hopefully we will have less and less of them as things mature fast). This one introduces substantial improvements and some simplifications to the stack.

Most important bits:

* Agents reference implementation now has support for session / turn persistence. The default implementation uses sqlite but there's also support for using Redis.

* We have re-architected the structure of the Stack APIs to allow for more flexible routing. The motivating use cases are:
  - routing model A to ollama and model B to a remote provider like Together
  - routing shield A to local impl while shield B to a remote provider like Bedrock
  - routing a vector memory bank to Weaviate while routing a keyvalue memory bank to Redis

* Support for provider specific parameters to be passed from the clients. A client can pass data using `x_llamastack_provider_data` parameter which can be type-checked and provided to the Adapter implementations.
2024-09-23 14:22:22 -07:00

188 lines
6.5 KiB
Python

# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
"""
Type-safe data interchange for Python data classes.
:see: https://github.com/hunyadi/strong_typing
"""
import typing
from typing import Any, Literal, Optional, Tuple, Union
from .auxiliary import _auxiliary_types
from .inspection import (
is_generic_dict,
is_generic_list,
is_type_optional,
is_type_union,
TypeLike,
unwrap_generic_dict,
unwrap_generic_list,
unwrap_optional_type,
unwrap_union_types,
)
class TypeFormatter:
"""
Type formatter.
:param use_union_operator: Whether to emit union types as `X | Y` as per PEP 604.
"""
use_union_operator: bool
def __init__(self, use_union_operator: bool = False) -> None:
self.use_union_operator = use_union_operator
def union_to_str(self, data_type_args: Tuple[TypeLike, ...]) -> str:
if self.use_union_operator:
return " | ".join(self.python_type_to_str(t) for t in data_type_args)
else:
if len(data_type_args) == 2 and type(None) in data_type_args:
# Optional[T] is represented as Union[T, None]
origin_name = "Optional"
data_type_args = tuple(t for t in data_type_args if t is not type(None))
else:
origin_name = "Union"
args = ", ".join(self.python_type_to_str(t) for t in data_type_args)
return f"{origin_name}[{args}]"
def plain_type_to_str(self, data_type: TypeLike) -> str:
"Returns the string representation of a Python type without metadata."
# return forward references as the annotation string
if isinstance(data_type, typing.ForwardRef):
fwd: typing.ForwardRef = data_type
return fwd.__forward_arg__
elif isinstance(data_type, str):
return data_type
origin = typing.get_origin(data_type)
if origin is not None:
data_type_args = typing.get_args(data_type)
if origin is dict: # Dict[T]
origin_name = "Dict"
elif origin is list: # List[T]
origin_name = "List"
elif origin is set: # Set[T]
origin_name = "Set"
elif origin is Union:
return self.union_to_str(data_type_args)
elif origin is Literal:
args = ", ".join(repr(arg) for arg in data_type_args)
return f"Literal[{args}]"
else:
origin_name = origin.__name__
args = ", ".join(self.python_type_to_str(t) for t in data_type_args)
return f"{origin_name}[{args}]"
return data_type.__name__
def python_type_to_str(self, data_type: TypeLike) -> str:
"Returns the string representation of a Python type."
if data_type is type(None):
return "None"
# use compact name for alias types
name = _auxiliary_types.get(data_type)
if name is not None:
return name
metadata = getattr(data_type, "__metadata__", None)
if metadata is not None:
# type is Annotated[T, ...]
metatuple: Tuple[Any, ...] = metadata
arg = typing.get_args(data_type)[0]
# check for auxiliary types with user-defined annotations
metaset = set(metatuple)
for auxiliary_type, auxiliary_name in _auxiliary_types.items():
auxiliary_arg = typing.get_args(auxiliary_type)[0]
if arg is not auxiliary_arg:
continue
auxiliary_metatuple: Optional[Tuple[Any, ...]] = getattr(
auxiliary_type, "__metadata__", None
)
if auxiliary_metatuple is None:
continue
if metaset.issuperset(auxiliary_metatuple):
# type is an auxiliary type with extra annotations
auxiliary_args = ", ".join(
repr(m) for m in metatuple if m not in auxiliary_metatuple
)
return f"Annotated[{auxiliary_name}, {auxiliary_args}]"
# type is an annotated type
args = ", ".join(repr(m) for m in metatuple)
return f"Annotated[{self.plain_type_to_str(arg)}, {args}]"
else:
# type is a regular type
return self.plain_type_to_str(data_type)
def python_type_to_str(data_type: TypeLike, use_union_operator: bool = False) -> str:
"""
Returns the string representation of a Python type.
:param use_union_operator: Whether to emit union types as `X | Y` as per PEP 604.
"""
fmt = TypeFormatter(use_union_operator)
return fmt.python_type_to_str(data_type)
def python_type_to_name(data_type: TypeLike, force: bool = False) -> str:
"""
Returns the short name of a Python type.
:param force: Whether to produce a name for composite types such as generics.
"""
# use compact name for alias types
name = _auxiliary_types.get(data_type)
if name is not None:
return name
# unwrap annotated types
metadata = getattr(data_type, "__metadata__", None)
if metadata is not None:
# type is Annotated[T, ...]
arg = typing.get_args(data_type)[0]
return python_type_to_name(arg)
if force:
# generic types
if is_type_optional(data_type, strict=True):
inner_name = python_type_to_name(unwrap_optional_type(data_type))
return f"Optional__{inner_name}"
elif is_generic_list(data_type):
item_name = python_type_to_name(unwrap_generic_list(data_type))
return f"List__{item_name}"
elif is_generic_dict(data_type):
key_type, value_type = unwrap_generic_dict(data_type)
key_name = python_type_to_name(key_type)
value_name = python_type_to_name(value_type)
return f"Dict__{key_name}__{value_name}"
elif is_type_union(data_type):
member_types = unwrap_union_types(data_type)
member_names = "__".join(
python_type_to_name(member_type) for member_type in member_types
)
return f"Union__{member_names}"
# named system or user-defined type
if hasattr(data_type, "__name__") and not typing.get_args(data_type):
return data_type.__name__
raise TypeError(f"cannot assign a simple name to type: {data_type}")