forked from phoenix-oss/llama-stack-mirror
# What does this PR do? This PR splits the inference tests into text and vision to make testing on vLLM provider easier as mentioned in https://github.com/meta-llama/llama-stack/pull/951 since serving multiple models (e.g. Llama-3.2-11B-Vision-Instruct and Llama-3.1-8B-Instruct) on a single port using the OpenAI API is [not supported yet](https://docs.vllm.ai/en/v0.5.5/serving/faq.html) so it's a bit tricky to test both at the same time. ## Test Plan All previously passing tests related to text still pass: `LLAMA_STACK_BASE_URL=http://localhost:5002 pytest -v tests/client-sdk/inference/test_text_inference.py` All vision tests passed via `LLAMA_STACK_BASE_URL=http://localhost:5002 pytest -v tests/client-sdk/inference/test_vision_inference.py`. Signed-off-by: Yuan Tang <terrytangyuan@gmail.com>
133 lines
4 KiB
Python
133 lines
4 KiB
Python
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
|
# All rights reserved.
|
|
#
|
|
# This source code is licensed under the terms described in the LICENSE file in
|
|
# the root directory of this source tree.
|
|
|
|
import base64
|
|
import pathlib
|
|
|
|
import pytest
|
|
|
|
|
|
@pytest.fixture(scope="session")
|
|
def inference_provider_type(llama_stack_client):
|
|
providers = llama_stack_client.providers.list()
|
|
inference_providers = [p for p in providers if p.api == "inference"]
|
|
assert len(inference_providers) > 0, "No inference providers found"
|
|
return inference_providers[0].provider_type
|
|
|
|
|
|
@pytest.fixture
|
|
def image_path():
|
|
return pathlib.Path(__file__).parent / "dog.png"
|
|
|
|
|
|
@pytest.fixture
|
|
def base64_image_data(image_path):
|
|
# Convert the image to base64
|
|
return base64.b64encode(image_path.read_bytes()).decode("utf-8")
|
|
|
|
|
|
@pytest.fixture
|
|
def base64_image_url(base64_image_data, image_path):
|
|
# suffix includes the ., so we remove it
|
|
return f"data:image/{image_path.suffix[1:]};base64,{base64_image_data}"
|
|
|
|
|
|
def test_image_chat_completion_non_streaming(llama_stack_client, vision_model_id):
|
|
message = {
|
|
"role": "user",
|
|
"content": [
|
|
{
|
|
"type": "image",
|
|
"image": {
|
|
"url": {
|
|
# TODO: Replace with Github based URI to resources/sample1.jpg
|
|
"uri": "https://www.healthypawspetinsurance.com/Images/V3/DogAndPuppyInsurance/Dog_CTA_Desktop_HeroImage.jpg"
|
|
},
|
|
},
|
|
},
|
|
{
|
|
"type": "text",
|
|
"text": "Describe what is in this image.",
|
|
},
|
|
],
|
|
}
|
|
response = llama_stack_client.inference.chat_completion(
|
|
model_id=vision_model_id,
|
|
messages=[message],
|
|
stream=False,
|
|
)
|
|
message_content = response.completion_message.content.lower().strip()
|
|
assert len(message_content) > 0
|
|
assert any(expected in message_content for expected in {"dog", "puppy", "pup"})
|
|
|
|
|
|
def test_image_chat_completion_streaming(llama_stack_client, vision_model_id):
|
|
message = {
|
|
"role": "user",
|
|
"content": [
|
|
{
|
|
"type": "image",
|
|
"image": {
|
|
"url": {
|
|
# TODO: Replace with Github based URI to resources/sample1.jpg
|
|
"uri": "https://www.healthypawspetinsurance.com/Images/V3/DogAndPuppyInsurance/Dog_CTA_Desktop_HeroImage.jpg"
|
|
},
|
|
},
|
|
},
|
|
{
|
|
"type": "text",
|
|
"text": "Describe what is in this image.",
|
|
},
|
|
],
|
|
}
|
|
response = llama_stack_client.inference.chat_completion(
|
|
model_id=vision_model_id,
|
|
messages=[message],
|
|
stream=True,
|
|
)
|
|
streamed_content = ""
|
|
for chunk in response:
|
|
streamed_content += chunk.event.delta.text.lower()
|
|
assert len(streamed_content) > 0
|
|
assert any(expected in streamed_content for expected in {"dog", "puppy", "pup"})
|
|
|
|
|
|
@pytest.mark.parametrize("type_", ["url", "data"])
|
|
def test_image_chat_completion_base64(llama_stack_client, vision_model_id, base64_image_data, base64_image_url, type_):
|
|
image_spec = {
|
|
"url": {
|
|
"type": "image",
|
|
"image": {
|
|
"url": {
|
|
"uri": base64_image_url,
|
|
},
|
|
},
|
|
},
|
|
"data": {
|
|
"type": "image",
|
|
"image": {
|
|
"data": base64_image_data,
|
|
},
|
|
},
|
|
}[type_]
|
|
|
|
message = {
|
|
"role": "user",
|
|
"content": [
|
|
image_spec,
|
|
{
|
|
"type": "text",
|
|
"text": "Describe what is in this image.",
|
|
},
|
|
],
|
|
}
|
|
response = llama_stack_client.inference.chat_completion(
|
|
model_id=vision_model_id,
|
|
messages=[message],
|
|
stream=False,
|
|
)
|
|
message_content = response.completion_message.content.lower().strip()
|
|
assert len(message_content) > 0
|