forked from phoenix-oss/llama-stack-mirror
# What does this PR do? Closes #1773 Signed-off-by: Daniele Martinoli <dmartino@redhat.com>
4425 lines
209 KiB
Text
4425 lines
209 KiB
Text
{
|
||
"cells": [
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {
|
||
"id": "hTIfyoGtjoWD"
|
||
},
|
||
"source": [
|
||
"[](https://colab.research.google.com/github/meta-llama/llama-stack/blob/main/docs/notebooks/Llama_Stack_Benchmark_Evals.ipynb)\n",
|
||
"\n",
|
||
"# Llama Stack Benchmark Evals\n",
|
||
"\n",
|
||
"This notebook will walk you through the main sets of APIs we offer with Llama Stack for supporting running benchmark evaluations of your with working examples to explore the possibilities that Llama Stack opens up for you.\n",
|
||
"\n",
|
||
"Read more about Llama Stack: https://llama-stack.readthedocs.io/en/latest/index.html"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {
|
||
"id": "bxs0FJ1ckGa6"
|
||
},
|
||
"source": [
|
||
"## 0. Bootstrapping Llama Stack Library\n",
|
||
"\n",
|
||
"##### 0.1. Prerequisite: Create TogetherAI account\n",
|
||
"\n",
|
||
"In order to run inference for the llama models, you will need to use an inference provider. Llama stack supports a number of inference [providers](https://github.com/meta-llama/llama-stack/tree/main/llama_stack/providers/remote/inference).\n",
|
||
"\n",
|
||
"In this showcase, we will use [together.ai](https://www.together.ai/) as the inference provider. So, you would first get an API key from Together if you dont have one already.\n",
|
||
"You can also use Fireworks.ai or even Ollama if you would like to.\n",
|
||
"\n",
|
||
"\n",
|
||
"> **Note:** Set the API Key in the Secrets of this notebook as `TOGETHER_API_KEY`"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": null,
|
||
"metadata": {
|
||
"colab": {
|
||
"base_uri": "https://localhost:8080/"
|
||
},
|
||
"collapsed": true,
|
||
"id": "O9pGVlPIjpix",
|
||
"outputId": "e1fbe723-ae31-4630-eb80-4c4f6476d56f"
|
||
},
|
||
"outputs": [],
|
||
"source": [
|
||
"# NBVAL_SKIP\n",
|
||
"!pip install -U llama-stack"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": null,
|
||
"metadata": {
|
||
"colab": {
|
||
"base_uri": "https://localhost:8080/"
|
||
},
|
||
"collapsed": true,
|
||
"id": "JQpLUSNjlGAM",
|
||
"outputId": "2f7fec97-5511-4cae-d51e-6d262fbca19c"
|
||
},
|
||
"outputs": [],
|
||
"source": [
|
||
"# NBVAL_SKIP\n",
|
||
"!UV_SYSTEM_PYTHON=1 llama stack build --template together --image-type venv"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 1,
|
||
"metadata": {
|
||
"colab": {
|
||
"base_uri": "https://localhost:8080/"
|
||
},
|
||
"collapsed": true,
|
||
"id": "KkT2qVeTlI-b",
|
||
"outputId": "9198fbfc-a126-4409-e2f5-5f5bf5cdf9a7"
|
||
},
|
||
"outputs": [
|
||
{
|
||
"name": "stdout",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"Not in Google Colab environment\n"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"Warning: `bwrap` is not available. Code interpreter tool will not work correctly.\n"
|
||
]
|
||
},
|
||
{
|
||
"data": {
|
||
"text/html": [
|
||
"<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\">Using config <span style=\"color: #000080; text-decoration-color: #000080\">together</span>:\n",
|
||
"</pre>\n"
|
||
],
|
||
"text/plain": [
|
||
"Using config \u001b[34mtogether\u001b[0m:\n"
|
||
]
|
||
},
|
||
"metadata": {},
|
||
"output_type": "display_data"
|
||
},
|
||
{
|
||
"data": {
|
||
"text/html": [
|
||
"<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\">apis:\n",
|
||
"- agents\n",
|
||
"- datasetio\n",
|
||
"- eval\n",
|
||
"- inference\n",
|
||
"- safety\n",
|
||
"- scoring\n",
|
||
"- telemetry\n",
|
||
"- tool_runtime\n",
|
||
"- vector_io\n",
|
||
"benchmarks: <span style=\"font-weight: bold\">[]</span>\n",
|
||
"container_image: null\n",
|
||
"datasets: <span style=\"font-weight: bold\">[]</span>\n",
|
||
"image_name: together\n",
|
||
"logging: null\n",
|
||
"metadata_store:\n",
|
||
" db_path: <span style=\"color: #800080; text-decoration-color: #800080\">/Users/xiyan/.llama/distributions/together/</span><span style=\"color: #ff00ff; text-decoration-color: #ff00ff\">registry.db</span>\n",
|
||
" namespace: null\n",
|
||
" type: sqlite\n",
|
||
"models:\n",
|
||
"- metadata: <span style=\"font-weight: bold\">{}</span>\n",
|
||
" model_id: meta-llama/Meta-Llama-<span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">3.1</span>-8B-Instruct-Turbo\n",
|
||
" model_type: !!python/object/apply:llama_stack.apis.models.models.ModelType\n",
|
||
" - llm\n",
|
||
" provider_id: together\n",
|
||
" provider_model_id: meta-llama/Meta-Llama-<span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">3.1</span>-8B-Instruct-Turbo\n",
|
||
"- metadata: <span style=\"font-weight: bold\">{}</span>\n",
|
||
" model_id: meta-llama/Llama-<span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">3.1</span>-8B-Instruct\n",
|
||
" model_type: !!python/object/apply:llama_stack.apis.models.models.ModelType\n",
|
||
" - llm\n",
|
||
" provider_id: together\n",
|
||
" provider_model_id: meta-llama/Meta-Llama-<span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">3.1</span>-8B-Instruct-Turbo\n",
|
||
"- metadata: <span style=\"font-weight: bold\">{}</span>\n",
|
||
" model_id: meta-llama/Meta-Llama-<span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">3.1</span>-70B-Instruct-Turbo\n",
|
||
" model_type: !!python/object/apply:llama_stack.apis.models.models.ModelType\n",
|
||
" - llm\n",
|
||
" provider_id: together\n",
|
||
" provider_model_id: meta-llama/Meta-Llama-<span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">3.1</span>-70B-Instruct-Turbo\n",
|
||
"- metadata: <span style=\"font-weight: bold\">{}</span>\n",
|
||
" model_id: meta-llama/Llama-<span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">3.1</span>-70B-Instruct\n",
|
||
" model_type: !!python/object/apply:llama_stack.apis.models.models.ModelType\n",
|
||
" - llm\n",
|
||
" provider_id: together\n",
|
||
" provider_model_id: meta-llama/Meta-Llama-<span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">3.1</span>-70B-Instruct-Turbo\n",
|
||
"- metadata: <span style=\"font-weight: bold\">{}</span>\n",
|
||
" model_id: meta-llama/Meta-Llama-<span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">3.1</span>-405B-Instruct-Turbo\n",
|
||
" model_type: !!python/object/apply:llama_stack.apis.models.models.ModelType\n",
|
||
" - llm\n",
|
||
" provider_id: together\n",
|
||
" provider_model_id: meta-llama/Meta-Llama-<span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">3.1</span>-405B-Instruct-Turbo\n",
|
||
"- metadata: <span style=\"font-weight: bold\">{}</span>\n",
|
||
" model_id: meta-llama/Llama-<span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">3.1</span>-405B-Instruct-FP8\n",
|
||
" model_type: !!python/object/apply:llama_stack.apis.models.models.ModelType\n",
|
||
" - llm\n",
|
||
" provider_id: together\n",
|
||
" provider_model_id: meta-llama/Meta-Llama-<span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">3.1</span>-405B-Instruct-Turbo\n",
|
||
"- metadata: <span style=\"font-weight: bold\">{}</span>\n",
|
||
" model_id: meta-llama/Llama-<span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">3.2</span>-3B-Instruct-Turbo\n",
|
||
" model_type: !!python/object/apply:llama_stack.apis.models.models.ModelType\n",
|
||
" - llm\n",
|
||
" provider_id: together\n",
|
||
" provider_model_id: meta-llama/Llama-<span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">3.2</span>-3B-Instruct-Turbo\n",
|
||
"- metadata: <span style=\"font-weight: bold\">{}</span>\n",
|
||
" model_id: meta-llama/Llama-<span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">3.2</span>-3B-Instruct\n",
|
||
" model_type: !!python/object/apply:llama_stack.apis.models.models.ModelType\n",
|
||
" - llm\n",
|
||
" provider_id: together\n",
|
||
" provider_model_id: meta-llama/Llama-<span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">3.2</span>-3B-Instruct-Turbo\n",
|
||
"- metadata: <span style=\"font-weight: bold\">{}</span>\n",
|
||
" model_id: meta-llama/Llama-<span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">3.2</span>-11B-Vision-Instruct-Turbo\n",
|
||
" model_type: !!python/object/apply:llama_stack.apis.models.models.ModelType\n",
|
||
" - llm\n",
|
||
" provider_id: together\n",
|
||
" provider_model_id: meta-llama/Llama-<span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">3.2</span>-11B-Vision-Instruct-Turbo\n",
|
||
"- metadata: <span style=\"font-weight: bold\">{}</span>\n",
|
||
" model_id: meta-llama/Llama-<span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">3.2</span>-11B-Vision-Instruct\n",
|
||
" model_type: !!python/object/apply:llama_stack.apis.models.models.ModelType\n",
|
||
" - llm\n",
|
||
" provider_id: together\n",
|
||
" provider_model_id: meta-llama/Llama-<span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">3.2</span>-11B-Vision-Instruct-Turbo\n",
|
||
"- metadata: <span style=\"font-weight: bold\">{}</span>\n",
|
||
" model_id: meta-llama/Llama-<span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">3.2</span>-90B-Vision-Instruct-Turbo\n",
|
||
" model_type: !!python/object/apply:llama_stack.apis.models.models.ModelType\n",
|
||
" - llm\n",
|
||
" provider_id: together\n",
|
||
" provider_model_id: meta-llama/Llama-<span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">3.2</span>-90B-Vision-Instruct-Turbo\n",
|
||
"- metadata: <span style=\"font-weight: bold\">{}</span>\n",
|
||
" model_id: meta-llama/Llama-<span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">3.2</span>-90B-Vision-Instruct\n",
|
||
" model_type: !!python/object/apply:llama_stack.apis.models.models.ModelType\n",
|
||
" - llm\n",
|
||
" provider_id: together\n",
|
||
" provider_model_id: meta-llama/Llama-<span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">3.2</span>-90B-Vision-Instruct-Turbo\n",
|
||
"- metadata: <span style=\"font-weight: bold\">{}</span>\n",
|
||
" model_id: meta-llama/Llama-<span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">3.3</span>-70B-Instruct-Turbo\n",
|
||
" model_type: !!python/object/apply:llama_stack.apis.models.models.ModelType\n",
|
||
" - llm\n",
|
||
" provider_id: together\n",
|
||
" provider_model_id: meta-llama/Llama-<span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">3.3</span>-70B-Instruct-Turbo\n",
|
||
"- metadata: <span style=\"font-weight: bold\">{}</span>\n",
|
||
" model_id: meta-llama/Llama-<span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">3.3</span>-70B-Instruct\n",
|
||
" model_type: !!python/object/apply:llama_stack.apis.models.models.ModelType\n",
|
||
" - llm\n",
|
||
" provider_id: together\n",
|
||
" provider_model_id: meta-llama/Llama-<span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">3.3</span>-70B-Instruct-Turbo\n",
|
||
"- metadata: <span style=\"font-weight: bold\">{}</span>\n",
|
||
" model_id: meta-llama/Meta-Llama-Guard-<span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">3</span>-8B\n",
|
||
" model_type: !!python/object/apply:llama_stack.apis.models.models.ModelType\n",
|
||
" - llm\n",
|
||
" provider_id: together\n",
|
||
" provider_model_id: meta-llama/Meta-Llama-Guard-<span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">3</span>-8B\n",
|
||
"- metadata: <span style=\"font-weight: bold\">{}</span>\n",
|
||
" model_id: meta-llama/Llama-Guard-<span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">3</span>-8B\n",
|
||
" model_type: !!python/object/apply:llama_stack.apis.models.models.ModelType\n",
|
||
" - llm\n",
|
||
" provider_id: together\n",
|
||
" provider_model_id: meta-llama/Meta-Llama-Guard-<span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">3</span>-8B\n",
|
||
"- metadata: <span style=\"font-weight: bold\">{}</span>\n",
|
||
" model_id: meta-llama/Llama-Guard-<span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">3</span>-11B-Vision-Turbo\n",
|
||
" model_type: !!python/object/apply:llama_stack.apis.models.models.ModelType\n",
|
||
" - llm\n",
|
||
" provider_id: together\n",
|
||
" provider_model_id: meta-llama/Llama-Guard-<span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">3</span>-11B-Vision-Turbo\n",
|
||
"- metadata: <span style=\"font-weight: bold\">{}</span>\n",
|
||
" model_id: meta-llama/Llama-Guard-<span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">3</span>-11B-Vision\n",
|
||
" model_type: !!python/object/apply:llama_stack.apis.models.models.ModelType\n",
|
||
" - llm\n",
|
||
" provider_id: together\n",
|
||
" provider_model_id: meta-llama/Llama-Guard-<span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">3</span>-11B-Vision-Turbo\n",
|
||
"- metadata:\n",
|
||
" context_length: <span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">8192</span>\n",
|
||
" embedding_dimension: <span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">768</span>\n",
|
||
" model_id: togethercomputer/m2-bert-80M-8k-retrieval\n",
|
||
" model_type: !!python/object/apply:llama_stack.apis.models.models.ModelType\n",
|
||
" - embedding\n",
|
||
" provider_id: together\n",
|
||
" provider_model_id: togethercomputer/m2-bert-80M-8k-retrieval\n",
|
||
"- metadata:\n",
|
||
" context_length: <span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">32768</span>\n",
|
||
" embedding_dimension: <span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">768</span>\n",
|
||
" model_id: togethercomputer/m2-bert-80M-32k-retrieval\n",
|
||
" model_type: !!python/object/apply:llama_stack.apis.models.models.ModelType\n",
|
||
" - embedding\n",
|
||
" provider_id: together\n",
|
||
" provider_model_id: togethercomputer/m2-bert-80M-32k-retrieval\n",
|
||
"- metadata:\n",
|
||
" embedding_dimension: <span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">384</span>\n",
|
||
" model_id: all-MiniLM-L6-v2\n",
|
||
" model_type: !!python/object/apply:llama_stack.apis.models.models.ModelType\n",
|
||
" - embedding\n",
|
||
" provider_id: sentence-transformers\n",
|
||
" provider_model_id: null\n",
|
||
"providers:\n",
|
||
" agents:\n",
|
||
" - config:\n",
|
||
" persistence_store:\n",
|
||
" db_path: <span style=\"color: #800080; text-decoration-color: #800080\">/Users/xiyan/.llama/distributions/together/</span><span style=\"color: #ff00ff; text-decoration-color: #ff00ff\">agents_store.db</span>\n",
|
||
" namespace: null\n",
|
||
" type: sqlite\n",
|
||
" provider_id: meta-reference\n",
|
||
" provider_type: inline::meta-reference\n",
|
||
" datasetio:\n",
|
||
" - config:\n",
|
||
" kvstore:\n",
|
||
" db_path: <span style=\"color: #800080; text-decoration-color: #800080\">/Users/xiyan/.llama/distributions/together/</span><span style=\"color: #ff00ff; text-decoration-color: #ff00ff\">huggingface_datasetio.db</span>\n",
|
||
" namespace: null\n",
|
||
" type: sqlite\n",
|
||
" provider_id: huggingface\n",
|
||
" provider_type: remote::huggingface\n",
|
||
" - config:\n",
|
||
" kvstore:\n",
|
||
" db_path: <span style=\"color: #800080; text-decoration-color: #800080\">/Users/xiyan/.llama/distributions/together/</span><span style=\"color: #ff00ff; text-decoration-color: #ff00ff\">localfs_datasetio.db</span>\n",
|
||
" namespace: null\n",
|
||
" type: sqlite\n",
|
||
" provider_id: localfs\n",
|
||
" provider_type: inline::localfs\n",
|
||
" eval:\n",
|
||
" - config:\n",
|
||
" kvstore:\n",
|
||
" db_path: <span style=\"color: #800080; text-decoration-color: #800080\">/Users/xiyan/.llama/distributions/together/</span><span style=\"color: #ff00ff; text-decoration-color: #ff00ff\">meta_reference_eval.db</span>\n",
|
||
" namespace: null\n",
|
||
" type: sqlite\n",
|
||
" provider_id: meta-reference\n",
|
||
" provider_type: inline::meta-reference\n",
|
||
" inference:\n",
|
||
" - config:\n",
|
||
" api_key: <span style=\"color: #008000; text-decoration-color: #008000\">'********'</span>\n",
|
||
" url: <span style=\"color: #0000ff; text-decoration-color: #0000ff; text-decoration: underline\">https://api.together.xyz/v1</span>\n",
|
||
" provider_id: together\n",
|
||
" provider_type: remote::together\n",
|
||
" - config: <span style=\"font-weight: bold\">{}</span>\n",
|
||
" provider_id: sentence-transformers\n",
|
||
" provider_type: inline::sentence-transformers\n",
|
||
" safety:\n",
|
||
" - config:\n",
|
||
" excluded_categories: <span style=\"font-weight: bold\">[]</span>\n",
|
||
" provider_id: llama-guard\n",
|
||
" provider_type: inline::llama-guard\n",
|
||
" scoring:\n",
|
||
" - config: <span style=\"font-weight: bold\">{}</span>\n",
|
||
" provider_id: basic\n",
|
||
" provider_type: inlin<span style=\"color: #00ff00; text-decoration-color: #00ff00; font-weight: bold\">e::ba</span>sic\n",
|
||
" - config: <span style=\"font-weight: bold\">{}</span>\n",
|
||
" provider_id: llm-as-judge\n",
|
||
" provider_type: inline::llm-as-judge\n",
|
||
" - config:\n",
|
||
" openai_api_key: <span style=\"color: #008000; text-decoration-color: #008000\">'********'</span>\n",
|
||
" provider_id: braintrust\n",
|
||
" provider_type: inlin<span style=\"color: #00ff00; text-decoration-color: #00ff00; font-weight: bold\">e::b</span>raintrust\n",
|
||
" telemetry:\n",
|
||
" - config:\n",
|
||
" service_name: llama-stack\n",
|
||
" sinks: sqlite\n",
|
||
" sqlite_db_path: <span style=\"color: #800080; text-decoration-color: #800080\">/Users/xiyan/.llama/distributions/together/</span><span style=\"color: #ff00ff; text-decoration-color: #ff00ff\">trace_store.db</span>\n",
|
||
" provider_id: meta-reference\n",
|
||
" provider_type: inline::meta-reference\n",
|
||
" tool_runtime:\n",
|
||
" - config:\n",
|
||
" api_key: <span style=\"color: #008000; text-decoration-color: #008000\">'********'</span>\n",
|
||
" max_results: <span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">3</span>\n",
|
||
" provider_id: brave-search\n",
|
||
" provider_type: remot<span style=\"color: #00ff00; text-decoration-color: #00ff00; font-weight: bold\">e::b</span>rave-search\n",
|
||
" - config:\n",
|
||
" api_key: <span style=\"color: #008000; text-decoration-color: #008000\">'********'</span>\n",
|
||
" max_results: <span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">3</span>\n",
|
||
" provider_id: tavily-search\n",
|
||
" provider_type: remote::tavily-search\n",
|
||
" - config: <span style=\"font-weight: bold\">{}</span>\n",
|
||
" provider_id: code-interpreter\n",
|
||
" provider_type: inlin<span style=\"color: #00ff00; text-decoration-color: #00ff00; font-weight: bold\">e::c</span>ode-interpreter\n",
|
||
" - config: <span style=\"font-weight: bold\">{}</span>\n",
|
||
" provider_id: rag-runtime\n",
|
||
" provider_type: inline::rag-runtime\n",
|
||
" - config: <span style=\"font-weight: bold\">{}</span>\n",
|
||
" provider_id: model-context-protocol\n",
|
||
" provider_type: remote::model-context-protocol\n",
|
||
" - config:\n",
|
||
" api_key: <span style=\"color: #008000; text-decoration-color: #008000\">'********'</span>\n",
|
||
" provider_id: wolfram-alpha\n",
|
||
" provider_type: remote::wolfram-alpha\n",
|
||
" vector_io:\n",
|
||
" - config:\n",
|
||
" kvstore:\n",
|
||
" db_path: <span style=\"color: #800080; text-decoration-color: #800080\">/Users/xiyan/.llama/distributions/together/</span><span style=\"color: #ff00ff; text-decoration-color: #ff00ff\">faiss_store.db</span>\n",
|
||
" namespace: null\n",
|
||
" type: sqlite\n",
|
||
" provider_id: faiss\n",
|
||
" provider_type: inlin<span style=\"color: #00ff00; text-decoration-color: #00ff00; font-weight: bold\">e::fa</span>iss\n",
|
||
"scoring_fns: <span style=\"font-weight: bold\">[]</span>\n",
|
||
"server:\n",
|
||
" port: <span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">8321</span>\n",
|
||
" tls_certfile: null\n",
|
||
" tls_keyfile: null\n",
|
||
"shields:\n",
|
||
"- params: null\n",
|
||
" provider_id: null\n",
|
||
" provider_shield_id: null\n",
|
||
" shield_id: meta-llama/Llama-Guard-<span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">3</span>-8B\n",
|
||
"tool_groups:\n",
|
||
"- args: null\n",
|
||
" mcp_endpoint: null\n",
|
||
" provider_id: tavily-search\n",
|
||
" toolgroup_id: builtin::websearch\n",
|
||
"- args: null\n",
|
||
" mcp_endpoint: null\n",
|
||
" provider_id: rag-runtime\n",
|
||
" toolgroup_id: builtin::rag\n",
|
||
"- args: null\n",
|
||
" mcp_endpoint: null\n",
|
||
" provider_id: code-interpreter\n",
|
||
" toolgroup_id: builtin::code_interpreter\n",
|
||
"- args: null\n",
|
||
" mcp_endpoint: null\n",
|
||
" provider_id: wolfram-alpha\n",
|
||
" toolgroup_id: builtin::wolfram_alpha\n",
|
||
"vector_dbs: <span style=\"font-weight: bold\">[]</span>\n",
|
||
"version: <span style=\"color: #008000; text-decoration-color: #008000\">'2'</span>\n",
|
||
"\n",
|
||
"</pre>\n"
|
||
],
|
||
"text/plain": [
|
||
"apis:\n",
|
||
"- agents\n",
|
||
"- datasetio\n",
|
||
"- eval\n",
|
||
"- inference\n",
|
||
"- safety\n",
|
||
"- scoring\n",
|
||
"- telemetry\n",
|
||
"- tool_runtime\n",
|
||
"- vector_io\n",
|
||
"benchmarks: \u001b[1m[\u001b[0m\u001b[1m]\u001b[0m\n",
|
||
"container_image: null\n",
|
||
"datasets: \u001b[1m[\u001b[0m\u001b[1m]\u001b[0m\n",
|
||
"image_name: together\n",
|
||
"logging: null\n",
|
||
"metadata_store:\n",
|
||
" db_path: \u001b[35m/Users/xiyan/.llama/distributions/together/\u001b[0m\u001b[95mregistry.db\u001b[0m\n",
|
||
" namespace: null\n",
|
||
" type: sqlite\n",
|
||
"models:\n",
|
||
"- metadata: \u001b[1m{\u001b[0m\u001b[1m}\u001b[0m\n",
|
||
" model_id: meta-llama/Meta-Llama-\u001b[1;36m3.1\u001b[0m-8B-Instruct-Turbo\n",
|
||
" model_type: !!python/object/apply:llama_stack.apis.models.models.ModelType\n",
|
||
" - llm\n",
|
||
" provider_id: together\n",
|
||
" provider_model_id: meta-llama/Meta-Llama-\u001b[1;36m3.1\u001b[0m-8B-Instruct-Turbo\n",
|
||
"- metadata: \u001b[1m{\u001b[0m\u001b[1m}\u001b[0m\n",
|
||
" model_id: meta-llama/Llama-\u001b[1;36m3.1\u001b[0m-8B-Instruct\n",
|
||
" model_type: !!python/object/apply:llama_stack.apis.models.models.ModelType\n",
|
||
" - llm\n",
|
||
" provider_id: together\n",
|
||
" provider_model_id: meta-llama/Meta-Llama-\u001b[1;36m3.1\u001b[0m-8B-Instruct-Turbo\n",
|
||
"- metadata: \u001b[1m{\u001b[0m\u001b[1m}\u001b[0m\n",
|
||
" model_id: meta-llama/Meta-Llama-\u001b[1;36m3.1\u001b[0m-70B-Instruct-Turbo\n",
|
||
" model_type: !!python/object/apply:llama_stack.apis.models.models.ModelType\n",
|
||
" - llm\n",
|
||
" provider_id: together\n",
|
||
" provider_model_id: meta-llama/Meta-Llama-\u001b[1;36m3.1\u001b[0m-70B-Instruct-Turbo\n",
|
||
"- metadata: \u001b[1m{\u001b[0m\u001b[1m}\u001b[0m\n",
|
||
" model_id: meta-llama/Llama-\u001b[1;36m3.1\u001b[0m-70B-Instruct\n",
|
||
" model_type: !!python/object/apply:llama_stack.apis.models.models.ModelType\n",
|
||
" - llm\n",
|
||
" provider_id: together\n",
|
||
" provider_model_id: meta-llama/Meta-Llama-\u001b[1;36m3.1\u001b[0m-70B-Instruct-Turbo\n",
|
||
"- metadata: \u001b[1m{\u001b[0m\u001b[1m}\u001b[0m\n",
|
||
" model_id: meta-llama/Meta-Llama-\u001b[1;36m3.1\u001b[0m-405B-Instruct-Turbo\n",
|
||
" model_type: !!python/object/apply:llama_stack.apis.models.models.ModelType\n",
|
||
" - llm\n",
|
||
" provider_id: together\n",
|
||
" provider_model_id: meta-llama/Meta-Llama-\u001b[1;36m3.1\u001b[0m-405B-Instruct-Turbo\n",
|
||
"- metadata: \u001b[1m{\u001b[0m\u001b[1m}\u001b[0m\n",
|
||
" model_id: meta-llama/Llama-\u001b[1;36m3.1\u001b[0m-405B-Instruct-FP8\n",
|
||
" model_type: !!python/object/apply:llama_stack.apis.models.models.ModelType\n",
|
||
" - llm\n",
|
||
" provider_id: together\n",
|
||
" provider_model_id: meta-llama/Meta-Llama-\u001b[1;36m3.1\u001b[0m-405B-Instruct-Turbo\n",
|
||
"- metadata: \u001b[1m{\u001b[0m\u001b[1m}\u001b[0m\n",
|
||
" model_id: meta-llama/Llama-\u001b[1;36m3.2\u001b[0m-3B-Instruct-Turbo\n",
|
||
" model_type: !!python/object/apply:llama_stack.apis.models.models.ModelType\n",
|
||
" - llm\n",
|
||
" provider_id: together\n",
|
||
" provider_model_id: meta-llama/Llama-\u001b[1;36m3.2\u001b[0m-3B-Instruct-Turbo\n",
|
||
"- metadata: \u001b[1m{\u001b[0m\u001b[1m}\u001b[0m\n",
|
||
" model_id: meta-llama/Llama-\u001b[1;36m3.2\u001b[0m-3B-Instruct\n",
|
||
" model_type: !!python/object/apply:llama_stack.apis.models.models.ModelType\n",
|
||
" - llm\n",
|
||
" provider_id: together\n",
|
||
" provider_model_id: meta-llama/Llama-\u001b[1;36m3.2\u001b[0m-3B-Instruct-Turbo\n",
|
||
"- metadata: \u001b[1m{\u001b[0m\u001b[1m}\u001b[0m\n",
|
||
" model_id: meta-llama/Llama-\u001b[1;36m3.2\u001b[0m-11B-Vision-Instruct-Turbo\n",
|
||
" model_type: !!python/object/apply:llama_stack.apis.models.models.ModelType\n",
|
||
" - llm\n",
|
||
" provider_id: together\n",
|
||
" provider_model_id: meta-llama/Llama-\u001b[1;36m3.2\u001b[0m-11B-Vision-Instruct-Turbo\n",
|
||
"- metadata: \u001b[1m{\u001b[0m\u001b[1m}\u001b[0m\n",
|
||
" model_id: meta-llama/Llama-\u001b[1;36m3.2\u001b[0m-11B-Vision-Instruct\n",
|
||
" model_type: !!python/object/apply:llama_stack.apis.models.models.ModelType\n",
|
||
" - llm\n",
|
||
" provider_id: together\n",
|
||
" provider_model_id: meta-llama/Llama-\u001b[1;36m3.2\u001b[0m-11B-Vision-Instruct-Turbo\n",
|
||
"- metadata: \u001b[1m{\u001b[0m\u001b[1m}\u001b[0m\n",
|
||
" model_id: meta-llama/Llama-\u001b[1;36m3.2\u001b[0m-90B-Vision-Instruct-Turbo\n",
|
||
" model_type: !!python/object/apply:llama_stack.apis.models.models.ModelType\n",
|
||
" - llm\n",
|
||
" provider_id: together\n",
|
||
" provider_model_id: meta-llama/Llama-\u001b[1;36m3.2\u001b[0m-90B-Vision-Instruct-Turbo\n",
|
||
"- metadata: \u001b[1m{\u001b[0m\u001b[1m}\u001b[0m\n",
|
||
" model_id: meta-llama/Llama-\u001b[1;36m3.2\u001b[0m-90B-Vision-Instruct\n",
|
||
" model_type: !!python/object/apply:llama_stack.apis.models.models.ModelType\n",
|
||
" - llm\n",
|
||
" provider_id: together\n",
|
||
" provider_model_id: meta-llama/Llama-\u001b[1;36m3.2\u001b[0m-90B-Vision-Instruct-Turbo\n",
|
||
"- metadata: \u001b[1m{\u001b[0m\u001b[1m}\u001b[0m\n",
|
||
" model_id: meta-llama/Llama-\u001b[1;36m3.3\u001b[0m-70B-Instruct-Turbo\n",
|
||
" model_type: !!python/object/apply:llama_stack.apis.models.models.ModelType\n",
|
||
" - llm\n",
|
||
" provider_id: together\n",
|
||
" provider_model_id: meta-llama/Llama-\u001b[1;36m3.3\u001b[0m-70B-Instruct-Turbo\n",
|
||
"- metadata: \u001b[1m{\u001b[0m\u001b[1m}\u001b[0m\n",
|
||
" model_id: meta-llama/Llama-\u001b[1;36m3.3\u001b[0m-70B-Instruct\n",
|
||
" model_type: !!python/object/apply:llama_stack.apis.models.models.ModelType\n",
|
||
" - llm\n",
|
||
" provider_id: together\n",
|
||
" provider_model_id: meta-llama/Llama-\u001b[1;36m3.3\u001b[0m-70B-Instruct-Turbo\n",
|
||
"- metadata: \u001b[1m{\u001b[0m\u001b[1m}\u001b[0m\n",
|
||
" model_id: meta-llama/Meta-Llama-Guard-\u001b[1;36m3\u001b[0m-8B\n",
|
||
" model_type: !!python/object/apply:llama_stack.apis.models.models.ModelType\n",
|
||
" - llm\n",
|
||
" provider_id: together\n",
|
||
" provider_model_id: meta-llama/Meta-Llama-Guard-\u001b[1;36m3\u001b[0m-8B\n",
|
||
"- metadata: \u001b[1m{\u001b[0m\u001b[1m}\u001b[0m\n",
|
||
" model_id: meta-llama/Llama-Guard-\u001b[1;36m3\u001b[0m-8B\n",
|
||
" model_type: !!python/object/apply:llama_stack.apis.models.models.ModelType\n",
|
||
" - llm\n",
|
||
" provider_id: together\n",
|
||
" provider_model_id: meta-llama/Meta-Llama-Guard-\u001b[1;36m3\u001b[0m-8B\n",
|
||
"- metadata: \u001b[1m{\u001b[0m\u001b[1m}\u001b[0m\n",
|
||
" model_id: meta-llama/Llama-Guard-\u001b[1;36m3\u001b[0m-11B-Vision-Turbo\n",
|
||
" model_type: !!python/object/apply:llama_stack.apis.models.models.ModelType\n",
|
||
" - llm\n",
|
||
" provider_id: together\n",
|
||
" provider_model_id: meta-llama/Llama-Guard-\u001b[1;36m3\u001b[0m-11B-Vision-Turbo\n",
|
||
"- metadata: \u001b[1m{\u001b[0m\u001b[1m}\u001b[0m\n",
|
||
" model_id: meta-llama/Llama-Guard-\u001b[1;36m3\u001b[0m-11B-Vision\n",
|
||
" model_type: !!python/object/apply:llama_stack.apis.models.models.ModelType\n",
|
||
" - llm\n",
|
||
" provider_id: together\n",
|
||
" provider_model_id: meta-llama/Llama-Guard-\u001b[1;36m3\u001b[0m-11B-Vision-Turbo\n",
|
||
"- metadata:\n",
|
||
" context_length: \u001b[1;36m8192\u001b[0m\n",
|
||
" embedding_dimension: \u001b[1;36m768\u001b[0m\n",
|
||
" model_id: togethercomputer/m2-bert-80M-8k-retrieval\n",
|
||
" model_type: !!python/object/apply:llama_stack.apis.models.models.ModelType\n",
|
||
" - embedding\n",
|
||
" provider_id: together\n",
|
||
" provider_model_id: togethercomputer/m2-bert-80M-8k-retrieval\n",
|
||
"- metadata:\n",
|
||
" context_length: \u001b[1;36m32768\u001b[0m\n",
|
||
" embedding_dimension: \u001b[1;36m768\u001b[0m\n",
|
||
" model_id: togethercomputer/m2-bert-80M-32k-retrieval\n",
|
||
" model_type: !!python/object/apply:llama_stack.apis.models.models.ModelType\n",
|
||
" - embedding\n",
|
||
" provider_id: together\n",
|
||
" provider_model_id: togethercomputer/m2-bert-80M-32k-retrieval\n",
|
||
"- metadata:\n",
|
||
" embedding_dimension: \u001b[1;36m384\u001b[0m\n",
|
||
" model_id: all-MiniLM-L6-v2\n",
|
||
" model_type: !!python/object/apply:llama_stack.apis.models.models.ModelType\n",
|
||
" - embedding\n",
|
||
" provider_id: sentence-transformers\n",
|
||
" provider_model_id: null\n",
|
||
"providers:\n",
|
||
" agents:\n",
|
||
" - config:\n",
|
||
" persistence_store:\n",
|
||
" db_path: \u001b[35m/Users/xiyan/.llama/distributions/together/\u001b[0m\u001b[95magents_store.db\u001b[0m\n",
|
||
" namespace: null\n",
|
||
" type: sqlite\n",
|
||
" provider_id: meta-reference\n",
|
||
" provider_type: inline::meta-reference\n",
|
||
" datasetio:\n",
|
||
" - config:\n",
|
||
" kvstore:\n",
|
||
" db_path: \u001b[35m/Users/xiyan/.llama/distributions/together/\u001b[0m\u001b[95mhuggingface_datasetio.db\u001b[0m\n",
|
||
" namespace: null\n",
|
||
" type: sqlite\n",
|
||
" provider_id: huggingface\n",
|
||
" provider_type: remote::huggingface\n",
|
||
" - config:\n",
|
||
" kvstore:\n",
|
||
" db_path: \u001b[35m/Users/xiyan/.llama/distributions/together/\u001b[0m\u001b[95mlocalfs_datasetio.db\u001b[0m\n",
|
||
" namespace: null\n",
|
||
" type: sqlite\n",
|
||
" provider_id: localfs\n",
|
||
" provider_type: inline::localfs\n",
|
||
" eval:\n",
|
||
" - config:\n",
|
||
" kvstore:\n",
|
||
" db_path: \u001b[35m/Users/xiyan/.llama/distributions/together/\u001b[0m\u001b[95mmeta_reference_eval.db\u001b[0m\n",
|
||
" namespace: null\n",
|
||
" type: sqlite\n",
|
||
" provider_id: meta-reference\n",
|
||
" provider_type: inline::meta-reference\n",
|
||
" inference:\n",
|
||
" - config:\n",
|
||
" api_key: \u001b[32m'********'\u001b[0m\n",
|
||
" url: \u001b[4;94mhttps://api.together.xyz/v1\u001b[0m\n",
|
||
" provider_id: together\n",
|
||
" provider_type: remote::together\n",
|
||
" - config: \u001b[1m{\u001b[0m\u001b[1m}\u001b[0m\n",
|
||
" provider_id: sentence-transformers\n",
|
||
" provider_type: inline::sentence-transformers\n",
|
||
" safety:\n",
|
||
" - config:\n",
|
||
" excluded_categories: \u001b[1m[\u001b[0m\u001b[1m]\u001b[0m\n",
|
||
" provider_id: llama-guard\n",
|
||
" provider_type: inline::llama-guard\n",
|
||
" scoring:\n",
|
||
" - config: \u001b[1m{\u001b[0m\u001b[1m}\u001b[0m\n",
|
||
" provider_id: basic\n",
|
||
" provider_type: inlin\u001b[1;92me::ba\u001b[0msic\n",
|
||
" - config: \u001b[1m{\u001b[0m\u001b[1m}\u001b[0m\n",
|
||
" provider_id: llm-as-judge\n",
|
||
" provider_type: inline::llm-as-judge\n",
|
||
" - config:\n",
|
||
" openai_api_key: \u001b[32m'********'\u001b[0m\n",
|
||
" provider_id: braintrust\n",
|
||
" provider_type: inlin\u001b[1;92me::b\u001b[0mraintrust\n",
|
||
" telemetry:\n",
|
||
" - config:\n",
|
||
" service_name: llama-stack\n",
|
||
" sinks: sqlite\n",
|
||
" sqlite_db_path: \u001b[35m/Users/xiyan/.llama/distributions/together/\u001b[0m\u001b[95mtrace_store.db\u001b[0m\n",
|
||
" provider_id: meta-reference\n",
|
||
" provider_type: inline::meta-reference\n",
|
||
" tool_runtime:\n",
|
||
" - config:\n",
|
||
" api_key: \u001b[32m'********'\u001b[0m\n",
|
||
" max_results: \u001b[1;36m3\u001b[0m\n",
|
||
" provider_id: brave-search\n",
|
||
" provider_type: remot\u001b[1;92me::b\u001b[0mrave-search\n",
|
||
" - config:\n",
|
||
" api_key: \u001b[32m'********'\u001b[0m\n",
|
||
" max_results: \u001b[1;36m3\u001b[0m\n",
|
||
" provider_id: tavily-search\n",
|
||
" provider_type: remote::tavily-search\n",
|
||
" - config: \u001b[1m{\u001b[0m\u001b[1m}\u001b[0m\n",
|
||
" provider_id: code-interpreter\n",
|
||
" provider_type: inlin\u001b[1;92me::c\u001b[0mode-interpreter\n",
|
||
" - config: \u001b[1m{\u001b[0m\u001b[1m}\u001b[0m\n",
|
||
" provider_id: rag-runtime\n",
|
||
" provider_type: inline::rag-runtime\n",
|
||
" - config: \u001b[1m{\u001b[0m\u001b[1m}\u001b[0m\n",
|
||
" provider_id: model-context-protocol\n",
|
||
" provider_type: remote::model-context-protocol\n",
|
||
" - config:\n",
|
||
" api_key: \u001b[32m'********'\u001b[0m\n",
|
||
" provider_id: wolfram-alpha\n",
|
||
" provider_type: remote::wolfram-alpha\n",
|
||
" vector_io:\n",
|
||
" - config:\n",
|
||
" kvstore:\n",
|
||
" db_path: \u001b[35m/Users/xiyan/.llama/distributions/together/\u001b[0m\u001b[95mfaiss_store.db\u001b[0m\n",
|
||
" namespace: null\n",
|
||
" type: sqlite\n",
|
||
" provider_id: faiss\n",
|
||
" provider_type: inlin\u001b[1;92me::fa\u001b[0miss\n",
|
||
"scoring_fns: \u001b[1m[\u001b[0m\u001b[1m]\u001b[0m\n",
|
||
"server:\n",
|
||
" port: \u001b[1;36m8321\u001b[0m\n",
|
||
" tls_certfile: null\n",
|
||
" tls_keyfile: null\n",
|
||
"shields:\n",
|
||
"- params: null\n",
|
||
" provider_id: null\n",
|
||
" provider_shield_id: null\n",
|
||
" shield_id: meta-llama/Llama-Guard-\u001b[1;36m3\u001b[0m-8B\n",
|
||
"tool_groups:\n",
|
||
"- args: null\n",
|
||
" mcp_endpoint: null\n",
|
||
" provider_id: tavily-search\n",
|
||
" toolgroup_id: builtin::websearch\n",
|
||
"- args: null\n",
|
||
" mcp_endpoint: null\n",
|
||
" provider_id: rag-runtime\n",
|
||
" toolgroup_id: builtin::rag\n",
|
||
"- args: null\n",
|
||
" mcp_endpoint: null\n",
|
||
" provider_id: code-interpreter\n",
|
||
" toolgroup_id: builtin::code_interpreter\n",
|
||
"- args: null\n",
|
||
" mcp_endpoint: null\n",
|
||
" provider_id: wolfram-alpha\n",
|
||
" toolgroup_id: builtin::wolfram_alpha\n",
|
||
"vector_dbs: \u001b[1m[\u001b[0m\u001b[1m]\u001b[0m\n",
|
||
"version: \u001b[32m'2'\u001b[0m\n",
|
||
"\n"
|
||
]
|
||
},
|
||
"metadata": {},
|
||
"output_type": "display_data"
|
||
}
|
||
],
|
||
"source": [
|
||
"import os\n",
|
||
"\n",
|
||
"try:\n",
|
||
" from google.colab import userdata\n",
|
||
" os.environ['TOGETHER_API_KEY'] = userdata.get('TOGETHER_API_KEY')\n",
|
||
" os.environ['TAVILY_SEARCH_API_KEY'] = userdata.get('TAVILY_SEARCH_API_KEY')\n",
|
||
"except ImportError:\n",
|
||
" print(\"Not in Google Colab environment\")\n",
|
||
"\n",
|
||
"from llama_stack.distribution.library_client import LlamaStackAsLibraryClient\n",
|
||
"\n",
|
||
"client = LlamaStackAsLibraryClient(\"together\")\n",
|
||
"_ = client.initialize()"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {
|
||
"id": "qwXHwHq4lS1s"
|
||
},
|
||
"source": [
|
||
"## 1. Open Benchmark Model Evaluation\n",
|
||
"\n",
|
||
"The first example walks you through how to evaluate a model candidate served by Llama Stack on open benchmarks. We will use the following benchmark:\n",
|
||
"\n",
|
||
"- [MMMU](https://arxiv.org/abs/2311.16502) (A Massive Multi-discipline Multimodal Understanding and Reasoning Benchmark for Expert AGI)]: Benchmark designed to evaluate multimodal models.\n",
|
||
"- [SimpleQA](https://openai.com/index/introducing-simpleqa/): Benchmark designed to access models to answer short, fact-seeking questions."
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {
|
||
"id": "dqXLFtcao1oI"
|
||
},
|
||
"source": [
|
||
"#### 1.1 Running MMMU\n",
|
||
"- We will use a pre-processed MMMU dataset from [llamastack/mmmu](https://huggingface.co/datasets/llamastack/mmmu). The preprocessing code is shown in in this [Github Gist](https://gist.github.com/yanxi0830/118e9c560227d27132a7fd10e2c92840). The dataset is obtained by transforming the original [MMMU/MMMU](https://huggingface.co/datasets/MMMU/MMMU) dataset into correct format by `inference/chat-completion` API."
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 2,
|
||
"metadata": {
|
||
"id": "TC_IwIAQo4q-"
|
||
},
|
||
"outputs": [],
|
||
"source": [
|
||
"name = \"llamastack/mmmu\"\n",
|
||
"subset = \"Agriculture\"\n",
|
||
"split = \"dev\""
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 3,
|
||
"metadata": {
|
||
"colab": {
|
||
"base_uri": "https://localhost:8080/",
|
||
"height": 305,
|
||
"referenced_widgets": [
|
||
"feb82e061ee44283b4a46be858ef4cd7",
|
||
"78a2d2d4ee3f42f3be42ef4baa298561",
|
||
"ba5e6ca09f174ef3a348453cf5cfc24a",
|
||
"74b58e4647644c9daf9af488942fdaf4",
|
||
"d56e218958a041e286e80f24e400ab0b",
|
||
"cab80632b7564a9eb59583e09573c1ee",
|
||
"10c0d50d7c204de0b4c8e8f4d3ec0af5",
|
||
"626ef2f811ae4e119a0e85cebe92b91d",
|
||
"aef4172d916f40b0ab4ed09104e10f24",
|
||
"25529e7fd57049d2816d31f696eab1fd",
|
||
"093bdcb608cf4b4fa37b0032a3915187",
|
||
"c788d4e9e1e24dca9b6503689df9b631",
|
||
"d1587e2144bf46299c1bdec3ea96e4e7",
|
||
"500a072c09da41759cb2c942a16d8429",
|
||
"9785009392934e3bbb229e8781667cbc",
|
||
"84570fe2c2a54a068fb9b8cbc8b041a1",
|
||
"f9e579c58e3f4ae0bbb721dffa33bf0a",
|
||
"737116977f474ec0b68d88a40fd1086c",
|
||
"e6d6e516cd03452297d80c36376855dd",
|
||
"6ae0fadb3aeb4be18a9ab3279fb23145",
|
||
"fa4800a506ac480984d58933580df086",
|
||
"117468099dbc42fdaafc08207eaac7ab",
|
||
"44f585990aa244d8ba61f892dc1ccc1c",
|
||
"4fc59928a0544f95a4438b37d19ca437",
|
||
"fb644d47049f495397d0e60597c86ea3",
|
||
"78632694ff694442bc3fefc2cac2cbf5",
|
||
"083fd2549abd4b03bd41d8b92ec28f42",
|
||
"611d6472a58d419583acc416767a4c90",
|
||
"98c5ce434cff454eaaa3f0fd3498183a",
|
||
"3d0344a9cc744e369da1b6b7ea1b3be8",
|
||
"c452ccbf47a44073aee710175f707a7d",
|
||
"0218397c573e4b28bfb4ffa66464d50f",
|
||
"9b01bcd6e5174be2af19f457047017c8",
|
||
"4fed5720f30b4b3cbbc606a4f25e223b",
|
||
"6fa866b9971542739b0ed26d90ceac80",
|
||
"fe7553b513954cc68c427b5d9d260b33",
|
||
"4bc266d49a6741a88350e029d101425b",
|
||
"da57445f98e7427589962836c2b4287e",
|
||
"ad1fb86cc1f94fd9911eda03cf4a3783",
|
||
"fdefb51ad4c4418b98c5826126558011",
|
||
"179d41b80dc841e8a440482516b8bca5",
|
||
"22b1ecd2eff14770bcfb0c62d3d4213f",
|
||
"47f876cf41484d55b645e1e99337423a",
|
||
"340fbbb4982c460992c88885e79b47db",
|
||
"9659140487ca4d3ea799196d2c1ecf61",
|
||
"52150fd494d24eea89b5232077509355",
|
||
"04acde771d0a46699e1de07d9733d1a3",
|
||
"7b98103300814f3caea84266263b95a2",
|
||
"75f06408071c494f934bb909b84110d1",
|
||
"b09b2690894749339a9172e5ad0a9b75",
|
||
"cbed38801163438d891879b756f5baab",
|
||
"399a6417b23e4593bb244ec3abb6b46d",
|
||
"53a321f36b0d4e08a74a5bcfbd04434b",
|
||
"b8c0c8aaac0d4032bf5c673a43d084ab",
|
||
"d1f32499fa3f4795b92361637e23a9bb",
|
||
"c06f9a090fb54c74b947634bf6d11fa8",
|
||
"82991dcc80f14af9bd2e95f705980676",
|
||
"cd832e3842b945aabbb327856053f261",
|
||
"93ee645d54f34acdb0d15092d4a6f0d1",
|
||
"b77fe05bbcf84cdc8ef85b264ccd35f6",
|
||
"e17d286a965a49cfb8d5bf885865cb1e",
|
||
"ca015c1a0c1449e68edb282462435a3f",
|
||
"2932b06afde9468a976eb6bfb072b80e",
|
||
"d027c807ddc04f89bec41dc05fde7718",
|
||
"4ff3a6aaf706460bbba01b248b93000e",
|
||
"bfd75a39f0154c30adbaad1e2ca0f1e2",
|
||
"4f788a7920c346f3b42900825bd6711a",
|
||
"8e9358ec7d474808bb96c13e13489c67",
|
||
"f0dfeee2a8d64dedbc8ef55ad4e69932",
|
||
"9437b707bf1a4847a50aafeb4252dab5",
|
||
"f255707788704a76bd1651f26a22402d",
|
||
"3b70fa4e43ef4951862e119378c3c501",
|
||
"6c0a6a7fa8ca4e1c961a36305f0e7638",
|
||
"201bd914f9884e46b8e6df9d9900a6e8",
|
||
"f53b7ada01084e73bba6e14a95e2a534",
|
||
"d2029292327b488db02fd123ee2b75af",
|
||
"3e26bc24a3e44b4582f57913bdf98de4",
|
||
"9d2b6eabf7e14436b72bbf374b4a2a0a",
|
||
"b5d7cb5a6157449a850ef0e12e3d3eb7",
|
||
"c245d316bf9e44dabe5bfd1e47fc8d2e",
|
||
"963cf422ca894d82b0dd94c6165d41bf",
|
||
"78d0e2aa93674bbeb42bff87a23cce9b",
|
||
"12c6f1180eeb4e9eb9037ea5dd24ec8e",
|
||
"017a81d7160240a398947545963856f5",
|
||
"1cf8eeb8d81c4e8a8e95dd43296a78b9",
|
||
"5b0b5a3f79e94c51aae48fe0dd34ba0e",
|
||
"f5b34a743ce54fb591f25b04a2651d65",
|
||
"dec6399e2c5341aead66e1674d3e6c72",
|
||
"24e48376a72940679989a39a40bbe7f6",
|
||
"484df732051540859bc7ac9cecadc83c",
|
||
"4b33b1db50c34a2fa957d81a71a2a47f",
|
||
"e51d501e2f994baba40345ad632eabee",
|
||
"631a85e420b64e8cb6915af59c5ce08a",
|
||
"70af9cb2838c4a92bd67f8cb5c98d97f",
|
||
"158115266c284c4f8dbce3586151cbf1",
|
||
"ce5019b36cde44c58c5f596dbb59a2f8",
|
||
"b90d660ca8584ba1815a3c66b420c079",
|
||
"7c4d1de626784a59a7e0a33c24086186",
|
||
"21cf0e35ecd845a8b5e7c5ce241cf177"
|
||
]
|
||
},
|
||
"collapsed": true,
|
||
"id": "DJkmoG2kq1_P",
|
||
"outputId": "8493ee59-c6ff-4bb6-d787-f295944db1cf"
|
||
},
|
||
"outputs": [],
|
||
"source": [
|
||
"import datasets\n",
|
||
"\n",
|
||
"ds = datasets.load_dataset(path=name, name=subset, split=split)\n",
|
||
"ds = ds.select_columns([\"chat_completion_input\", \"input_query\", \"expected_answer\"])\n",
|
||
"eval_rows = ds.to_pandas().to_dict(orient=\"records\")\n"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {
|
||
"id": "sqBA5LbNq7Xm"
|
||
},
|
||
"source": [
|
||
"- **Run Evaluation on Model Candidate**\n",
|
||
" - Define a System Prompt\n",
|
||
" - Define an EvalCandidate\n",
|
||
" - Run evaluate on datasets"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 4,
|
||
"metadata": {
|
||
"colab": {
|
||
"base_uri": "https://localhost:8080/",
|
||
"height": 441
|
||
},
|
||
"collapsed": true,
|
||
"id": "1r6qYTp9q5l7",
|
||
"outputId": "f1607a9b-c3a3-43cc-928f-0487d0438748"
|
||
},
|
||
"outputs": [
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"100%|██████████| 5/5 [00:33<00:00, 6.71s/it]\n"
|
||
]
|
||
},
|
||
{
|
||
"data": {
|
||
"text/html": [
|
||
"<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\"><span style=\"color: #800080; text-decoration-color: #800080; font-weight: bold\">EvaluateResponse</span><span style=\"font-weight: bold\">(</span>\n",
|
||
"<span style=\"color: #7fbf7f; text-decoration-color: #7fbf7f\">│ </span><span style=\"color: #808000; text-decoration-color: #808000\">generations</span>=<span style=\"font-weight: bold\">[</span>\n",
|
||
"<span style=\"color: #7fbf7f; text-decoration-color: #7fbf7f\">│ │ </span><span style=\"font-weight: bold\">{</span>\n",
|
||
"<span style=\"color: #7fbf7f; text-decoration-color: #7fbf7f\">│ │ │ </span><span style=\"color: #008000; text-decoration-color: #008000\">'generated_answer'</span>: <span style=\"color: #008000; text-decoration-color: #008000\">'**Potato Pests**\\n\\nThe two insects depicted are:\\n\\n* **Colorado Potato Beetle (Leptinotarsa decemlineata)**: Characterized by black and yellow stripes, this beetle is a significant pest of potatoes. It feeds on the leaves and can cause substantial damage to the crop.\\n* **False Potato Beetle (Leptinotarsa juncta)**: Also known as the false Colorado beetle, this species has similar coloring but is not as harmful to potatoes as the Colorado potato beetle.'</span>\n",
|
||
"<span style=\"color: #7fbf7f; text-decoration-color: #7fbf7f\">│ │ </span><span style=\"font-weight: bold\">}</span>,\n",
|
||
"<span style=\"color: #7fbf7f; text-decoration-color: #7fbf7f\">│ │ </span><span style=\"font-weight: bold\">{</span>\n",
|
||
"<span style=\"color: #7fbf7f; text-decoration-color: #7fbf7f\">│ │ │ </span><span style=\"color: #008000; text-decoration-color: #008000\">'generated_answer'</span>: <span style=\"color: #008000; text-decoration-color: #008000\">\"The image shows a sunflower leaf with a powdery mildew, which is a fungal disease caused by various species of fungi. The white powdery coating on the leaves is a characteristic symptom of this disease. The leaf also has some black spots, which could be indicative of a secondary infection or another type of disease. However, without more information or a closer examination, it's difficult to determine the exact cause of the black spots.\\n\\nBased on the image alone, we can see at least two types of symptoms: the powdery mildew and the black spots. This suggests that there may be more than one pathogen involved, but it's also possible that the black spots are a result of the same fungal infection causing the powdery mildew.\\n\\nAnswer: B) Two pathogens\"</span>\n",
|
||
"<span style=\"color: #7fbf7f; text-decoration-color: #7fbf7f\">│ │ </span><span style=\"font-weight: bold\">}</span>,\n",
|
||
"<span style=\"color: #7fbf7f; text-decoration-color: #7fbf7f\">│ │ </span><span style=\"font-weight: bold\">{</span>\n",
|
||
"<span style=\"color: #7fbf7f; text-decoration-color: #7fbf7f\">│ │ │ </span><span style=\"color: #008000; text-decoration-color: #008000\">'generated_answer'</span>: <span style=\"color: #008000; text-decoration-color: #008000\">'The symptoms observed, characterized by the massive gum production on the trunks of the grapefruit trees in Cyprus, suggest a physiological or pathological response. Given the absence of visible signs of damage or pests from a higher point on a hillside, and considering the specific nature of the symptom (gum production), we can infer that the cause is more likely related to an internal process within the tree rather than external damage from harvesting. While physiological stress (B) could lead to such symptoms, the primary reason for gum production in trees, especially in citrus species, is typically linked to disease. Among the options provided, fungal gummosis (E) is a condition known to cause gumming in citrus trees, which aligns with the observed symptoms. Therefore, without direct evidence of external damage (harvesting) or confirmation of physiological stress being the primary cause, the most appropriate answer based on the information given is:\\n\\nAnswer: E'</span>\n",
|
||
"<span style=\"color: #7fbf7f; text-decoration-color: #7fbf7f\">│ │ </span><span style=\"font-weight: bold\">}</span>,\n",
|
||
"<span style=\"color: #7fbf7f; text-decoration-color: #7fbf7f\">│ │ </span><span style=\"font-weight: bold\">{</span><span style=\"color: #008000; text-decoration-color: #008000\">'generated_answer'</span>: <span style=\"color: #008000; text-decoration-color: #008000\">'Answer: D'</span><span style=\"font-weight: bold\">}</span>,\n",
|
||
"<span style=\"color: #7fbf7f; text-decoration-color: #7fbf7f\">│ │ </span><span style=\"font-weight: bold\">{</span>\n",
|
||
"<span style=\"color: #7fbf7f; text-decoration-color: #7fbf7f\">│ │ │ </span><span style=\"color: #008000; text-decoration-color: #008000\">'generated_answer'</span>: <span style=\"color: #008000; text-decoration-color: #008000\">\"**Analysis of the Image**\\n\\nThe image provided shows a rhubarb plant with split petioles. To determine the cause of this issue, we need to consider various factors that could lead to such damage.\\n\\n**Possible Causes of Petiole Splitting**\\n\\n* **Physiological Problems**: Rhubarb plants can experience physiological stress due to environmental factors like extreme temperatures, waterlogging, or nutrient deficiencies. This stress can cause the petioles to split.\\n* **Phytoplasma Infection**: Phytoplasma is a type of bacteria that can infect plants, including rhubarb. It can cause symptoms such as yellowing leaves, stunted growth, and splitting of petioles.\\n* **Animal Damage**: Animals like rabbits, deer, or insects can damage rhubarb plants by eating the leaves or stems, which can lead to splitting of the petioles.\\n* **Bacteria**: Bacterial infections can also cause damage to rhubarb plants, including splitting of the petioles.\\n\\n**Conclusion**\\n\\nBased on the analysis, it is clear that all the options listed (A) Physiological problems, B) Phytoplasma infection, D) Animal damage, and E) Bacteria) could potentially cause the petioles of the rhubarb plant to split. Therefore, there is no single option that would not be a cause for the petioles splitting.\\n\\n**Answer**: C) I don't know and don't want to guess.\"</span>\n",
|
||
"<span style=\"color: #7fbf7f; text-decoration-color: #7fbf7f\">│ │ </span><span style=\"font-weight: bold\">}</span>\n",
|
||
"<span style=\"color: #7fbf7f; text-decoration-color: #7fbf7f\">│ </span><span style=\"font-weight: bold\">]</span>,\n",
|
||
"<span style=\"color: #7fbf7f; text-decoration-color: #7fbf7f\">│ </span><span style=\"color: #808000; text-decoration-color: #808000\">scores</span>=<span style=\"font-weight: bold\">{</span>\n",
|
||
"<span style=\"color: #7fbf7f; text-decoration-color: #7fbf7f\">│ │ </span><span style=\"color: #008000; text-decoration-color: #008000\">'basic::regex_parser_multiple_choice_answer'</span>: <span style=\"color: #800080; text-decoration-color: #800080; font-weight: bold\">ScoringResult</span><span style=\"font-weight: bold\">(</span>\n",
|
||
"<span style=\"color: #7fbf7f; text-decoration-color: #7fbf7f\">│ │ │ </span><span style=\"color: #808000; text-decoration-color: #808000\">aggregated_results</span>=<span style=\"font-weight: bold\">{</span><span style=\"color: #008000; text-decoration-color: #008000\">'accuracy'</span>: <span style=\"font-weight: bold\">{</span><span style=\"color: #008000; text-decoration-color: #008000\">'accuracy'</span>: <span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">0.2</span>, <span style=\"color: #008000; text-decoration-color: #008000\">'num_correct'</span>: <span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">1.0</span>, <span style=\"color: #008000; text-decoration-color: #008000\">'num_total'</span>: <span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">5</span><span style=\"font-weight: bold\">}}</span>,\n",
|
||
"<span style=\"color: #7fbf7f; text-decoration-color: #7fbf7f\">│ │ │ </span><span style=\"color: #808000; text-decoration-color: #808000\">score_rows</span>=<span style=\"font-weight: bold\">[{</span><span style=\"color: #008000; text-decoration-color: #008000\">'score'</span>: <span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">0.0</span><span style=\"font-weight: bold\">}</span>, <span style=\"font-weight: bold\">{</span><span style=\"color: #008000; text-decoration-color: #008000\">'score'</span>: <span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">0.0</span><span style=\"font-weight: bold\">}</span>, <span style=\"font-weight: bold\">{</span><span style=\"color: #008000; text-decoration-color: #008000\">'score'</span>: <span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">0.0</span><span style=\"font-weight: bold\">}</span>, <span style=\"font-weight: bold\">{</span><span style=\"color: #008000; text-decoration-color: #008000\">'score'</span>: <span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">1.0</span><span style=\"font-weight: bold\">}</span>, <span style=\"font-weight: bold\">{</span><span style=\"color: #008000; text-decoration-color: #008000\">'score'</span>: <span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">0.0</span><span style=\"font-weight: bold\">}]</span>\n",
|
||
"<span style=\"color: #7fbf7f; text-decoration-color: #7fbf7f\">│ │ </span><span style=\"font-weight: bold\">)</span>\n",
|
||
"<span style=\"color: #7fbf7f; text-decoration-color: #7fbf7f\">│ </span><span style=\"font-weight: bold\">}</span>\n",
|
||
"<span style=\"font-weight: bold\">)</span>\n",
|
||
"</pre>\n"
|
||
],
|
||
"text/plain": [
|
||
"\u001b[1;35mEvaluateResponse\u001b[0m\u001b[1m(\u001b[0m\n",
|
||
"\u001b[2;32m│ \u001b[0m\u001b[33mgenerations\u001b[0m=\u001b[1m[\u001b[0m\n",
|
||
"\u001b[2;32m│ │ \u001b[0m\u001b[1m{\u001b[0m\n",
|
||
"\u001b[2;32m│ │ │ \u001b[0m\u001b[32m'generated_answer'\u001b[0m: \u001b[32m'**Potato Pests**\\n\\nThe two insects depicted are:\\n\\n* **Colorado Potato Beetle \u001b[0m\u001b[32m(\u001b[0m\u001b[32mLeptinotarsa decemlineata\u001b[0m\u001b[32m)\u001b[0m\u001b[32m**: Characterized by black and yellow stripes, this beetle is a significant pest of potatoes. It feeds on the leaves and can cause substantial damage to the crop.\\n* **False Potato Beetle \u001b[0m\u001b[32m(\u001b[0m\u001b[32mLeptinotarsa juncta\u001b[0m\u001b[32m)\u001b[0m\u001b[32m**: Also known as the false Colorado beetle, this species has similar coloring but is not as harmful to potatoes as the Colorado potato beetle.'\u001b[0m\n",
|
||
"\u001b[2;32m│ │ \u001b[0m\u001b[1m}\u001b[0m,\n",
|
||
"\u001b[2;32m│ │ \u001b[0m\u001b[1m{\u001b[0m\n",
|
||
"\u001b[2;32m│ │ │ \u001b[0m\u001b[32m'generated_answer'\u001b[0m: \u001b[32m\"The image shows a sunflower leaf with a powdery mildew, which is a fungal disease caused by various species of fungi. The white powdery coating on the leaves is a characteristic symptom of this disease. The leaf also has some black spots, which could be indicative of a secondary infection or another type of disease. However, without more information or a closer examination, it's difficult to determine the exact cause of the black spots.\\n\\nBased on the image alone, we can see at least two types of symptoms: the powdery mildew and the black spots. This suggests that there may be more than one pathogen involved, but it's also possible that the black spots are a result of the same fungal infection causing the powdery mildew.\\n\\nAnswer: B\u001b[0m\u001b[32m)\u001b[0m\u001b[32m Two pathogens\"\u001b[0m\n",
|
||
"\u001b[2;32m│ │ \u001b[0m\u001b[1m}\u001b[0m,\n",
|
||
"\u001b[2;32m│ │ \u001b[0m\u001b[1m{\u001b[0m\n",
|
||
"\u001b[2;32m│ │ │ \u001b[0m\u001b[32m'generated_answer'\u001b[0m: \u001b[32m'The symptoms observed, characterized by the massive gum production on the trunks of the grapefruit trees in Cyprus, suggest a physiological or pathological response. Given the absence of visible signs of damage or pests from a higher point on a hillside, and considering the specific nature of the symptom \u001b[0m\u001b[32m(\u001b[0m\u001b[32mgum production\u001b[0m\u001b[32m)\u001b[0m\u001b[32m, we can infer that the cause is more likely related to an internal process within the tree rather than external damage from harvesting. While physiological stress \u001b[0m\u001b[32m(\u001b[0m\u001b[32mB\u001b[0m\u001b[32m)\u001b[0m\u001b[32m could lead to such symptoms, the primary reason for gum production in trees, especially in citrus species, is typically linked to disease. Among the options provided, fungal gummosis \u001b[0m\u001b[32m(\u001b[0m\u001b[32mE\u001b[0m\u001b[32m)\u001b[0m\u001b[32m is a condition known to cause gumming in citrus trees, which aligns with the observed symptoms. Therefore, without direct evidence of external damage \u001b[0m\u001b[32m(\u001b[0m\u001b[32mharvesting\u001b[0m\u001b[32m)\u001b[0m\u001b[32m or confirmation of physiological stress being the primary cause, the most appropriate answer based on the information given is:\\n\\nAnswer: E'\u001b[0m\n",
|
||
"\u001b[2;32m│ │ \u001b[0m\u001b[1m}\u001b[0m,\n",
|
||
"\u001b[2;32m│ │ \u001b[0m\u001b[1m{\u001b[0m\u001b[32m'generated_answer'\u001b[0m: \u001b[32m'Answer: D'\u001b[0m\u001b[1m}\u001b[0m,\n",
|
||
"\u001b[2;32m│ │ \u001b[0m\u001b[1m{\u001b[0m\n",
|
||
"\u001b[2;32m│ │ │ \u001b[0m\u001b[32m'generated_answer'\u001b[0m: \u001b[32m\"**Analysis of the Image**\\n\\nThe image provided shows a rhubarb plant with split petioles. To determine the cause of this issue, we need to consider various factors that could lead to such damage.\\n\\n**Possible Causes of Petiole Splitting**\\n\\n* **Physiological Problems**: Rhubarb plants can experience physiological stress due to environmental factors like extreme temperatures, waterlogging, or nutrient deficiencies. This stress can cause the petioles to split.\\n* **Phytoplasma Infection**: Phytoplasma is a type of bacteria that can infect plants, including rhubarb. It can cause symptoms such as yellowing leaves, stunted growth, and splitting of petioles.\\n* **Animal Damage**: Animals like rabbits, deer, or insects can damage rhubarb plants by eating the leaves or stems, which can lead to splitting of the petioles.\\n* **Bacteria**: Bacterial infections can also cause damage to rhubarb plants, including splitting of the petioles.\\n\\n**Conclusion**\\n\\nBased on the analysis, it is clear that all the options listed \u001b[0m\u001b[32m(\u001b[0m\u001b[32mA\u001b[0m\u001b[32m)\u001b[0m\u001b[32m Physiological problems, B\u001b[0m\u001b[32m)\u001b[0m\u001b[32m Phytoplasma infection, D\u001b[0m\u001b[32m)\u001b[0m\u001b[32m Animal damage, and E\u001b[0m\u001b[32m)\u001b[0m\u001b[32m Bacteria\u001b[0m\u001b[32m)\u001b[0m\u001b[32m could potentially cause the petioles of the rhubarb plant to split. Therefore, there is no single option that would not be a cause for the petioles splitting.\\n\\n**Answer**: C\u001b[0m\u001b[32m)\u001b[0m\u001b[32m I don't know and don't want to guess.\"\u001b[0m\n",
|
||
"\u001b[2;32m│ │ \u001b[0m\u001b[1m}\u001b[0m\n",
|
||
"\u001b[2;32m│ \u001b[0m\u001b[1m]\u001b[0m,\n",
|
||
"\u001b[2;32m│ \u001b[0m\u001b[33mscores\u001b[0m=\u001b[1m{\u001b[0m\n",
|
||
"\u001b[2;32m│ │ \u001b[0m\u001b[32m'basic::regex_parser_multiple_choice_answer'\u001b[0m: \u001b[1;35mScoringResult\u001b[0m\u001b[1m(\u001b[0m\n",
|
||
"\u001b[2;32m│ │ │ \u001b[0m\u001b[33maggregated_results\u001b[0m=\u001b[1m{\u001b[0m\u001b[32m'accuracy'\u001b[0m: \u001b[1m{\u001b[0m\u001b[32m'accuracy'\u001b[0m: \u001b[1;36m0.2\u001b[0m, \u001b[32m'num_correct'\u001b[0m: \u001b[1;36m1.0\u001b[0m, \u001b[32m'num_total'\u001b[0m: \u001b[1;36m5\u001b[0m\u001b[1m}\u001b[0m\u001b[1m}\u001b[0m,\n",
|
||
"\u001b[2;32m│ │ │ \u001b[0m\u001b[33mscore_rows\u001b[0m=\u001b[1m[\u001b[0m\u001b[1m{\u001b[0m\u001b[32m'score'\u001b[0m: \u001b[1;36m0.0\u001b[0m\u001b[1m}\u001b[0m, \u001b[1m{\u001b[0m\u001b[32m'score'\u001b[0m: \u001b[1;36m0.0\u001b[0m\u001b[1m}\u001b[0m, \u001b[1m{\u001b[0m\u001b[32m'score'\u001b[0m: \u001b[1;36m0.0\u001b[0m\u001b[1m}\u001b[0m, \u001b[1m{\u001b[0m\u001b[32m'score'\u001b[0m: \u001b[1;36m1.0\u001b[0m\u001b[1m}\u001b[0m, \u001b[1m{\u001b[0m\u001b[32m'score'\u001b[0m: \u001b[1;36m0.0\u001b[0m\u001b[1m}\u001b[0m\u001b[1m]\u001b[0m\n",
|
||
"\u001b[2;32m│ │ \u001b[0m\u001b[1m)\u001b[0m\n",
|
||
"\u001b[2;32m│ \u001b[0m\u001b[1m}\u001b[0m\n",
|
||
"\u001b[1m)\u001b[0m\n"
|
||
]
|
||
},
|
||
"metadata": {},
|
||
"output_type": "display_data"
|
||
}
|
||
],
|
||
"source": [
|
||
"from rich.pretty import pprint\n",
|
||
"from tqdm import tqdm\n",
|
||
"\n",
|
||
"SYSTEM_PROMPT_TEMPLATE = \"\"\"\n",
|
||
"You are an expert in {subject} whose job is to answer questions from the user using images.\n",
|
||
"\n",
|
||
"First, reason about the correct answer.\n",
|
||
"\n",
|
||
"Then write the answer in the following format where X is exactly one of A,B,C,D:\n",
|
||
"\n",
|
||
"Answer: X\n",
|
||
"\n",
|
||
"Make sure X is one of A,B,C,D.\n",
|
||
"\n",
|
||
"If you are uncertain of the correct answer, guess the most likely one.\n",
|
||
"\"\"\"\n",
|
||
"\n",
|
||
"system_message = {\n",
|
||
" \"role\": \"system\",\n",
|
||
" \"content\": SYSTEM_PROMPT_TEMPLATE.format(subject=subset),\n",
|
||
"}\n",
|
||
"\n",
|
||
"client.benchmarks.register(\n",
|
||
" benchmark_id=\"meta-reference::mmmu\",\n",
|
||
" # Note: we can use any value as `dataset_id` because we'll be using the `evaluate_rows` API which accepts the \n",
|
||
" # `input_rows` argument and does not fetch data from the dataset.\n",
|
||
" dataset_id=f\"mmmu-{subset}-{split}\",\n",
|
||
" # Note: for the same reason as above, we can use any value as `scoring_functions`.\n",
|
||
" scoring_functions=[],\n",
|
||
")\n",
|
||
"\n",
|
||
"response = client.eval.evaluate_rows(\n",
|
||
" benchmark_id=\"meta-reference::mmmu\",\n",
|
||
" input_rows=eval_rows,\n",
|
||
" # Note: Here we define the actual scoring functions.\n",
|
||
" scoring_functions=[\"basic::regex_parser_multiple_choice_answer\"],\n",
|
||
" benchmark_config={\n",
|
||
" \"eval_candidate\": {\n",
|
||
" \"type\": \"model\",\n",
|
||
" \"model\": \"meta-llama/Llama-3.2-90B-Vision-Instruct\",\n",
|
||
" \"sampling_params\": {\n",
|
||
" \"strategy\": {\n",
|
||
" \"type\": \"top_p\",\n",
|
||
" \"temperature\": 1.0,\n",
|
||
" \"top_p\": 0.95,\n",
|
||
" },\n",
|
||
" \"max_tokens\": 4096,\n",
|
||
" \"repeat_penalty\": 1.0,\n",
|
||
" },\n",
|
||
" \"system_message\": system_message,\n",
|
||
" },\n",
|
||
" },\n",
|
||
")\n",
|
||
"pprint(response)\n"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {
|
||
"id": "vYlb9wKzwg-s"
|
||
},
|
||
"source": [
|
||
"#### 1.2. Running SimpleQA\n",
|
||
"- We will use a pre-processed SimpleQA dataset from [llamastack/evals](https://huggingface.co/datasets/llamastack/evals/viewer/evals__simpleqa) which is obtained by transforming the input query into correct format accepted by `inference/chat-completion` API.\n",
|
||
"- Since we will be using this same dataset in our next example for Agentic evaluation, we will register it using the `/datasets` API, and interact with it through `/datasetio` API."
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 5,
|
||
"metadata": {
|
||
"id": "HXmZf3Ymw-aX"
|
||
},
|
||
"outputs": [],
|
||
"source": [
|
||
"simpleqa_dataset_id = \"huggingface::simpleqa\"\n",
|
||
"\n",
|
||
"register_dataset_response = client.datasets.register(\n",
|
||
" purpose=\"eval/messages-answer\",\n",
|
||
" source={\n",
|
||
" \"type\": \"uri\",\n",
|
||
" \"uri\": \"huggingface://datasets/llamastack/simpleqa?split=train\",\n",
|
||
" },\n",
|
||
" dataset_id=simpleqa_dataset_id,\n",
|
||
")"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 6,
|
||
"metadata": {
|
||
"id": "Gc8azb4Rxr5J"
|
||
},
|
||
"outputs": [],
|
||
"source": [
|
||
"eval_rows = client.datasets.iterrows(\n",
|
||
" dataset_id=simpleqa_dataset_id,\n",
|
||
" limit=5,\n",
|
||
")"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 7,
|
||
"metadata": {
|
||
"colab": {
|
||
"base_uri": "https://localhost:8080/",
|
||
"height": 506
|
||
},
|
||
"id": "zSYAUnBUyRaG",
|
||
"outputId": "038cf42f-4e3c-4053-b3c4-cf16547483dd"
|
||
},
|
||
"outputs": [
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
" 0%| | 0/5 [00:00<?, ?it/s]"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"100%|██████████| 5/5 [00:13<00:00, 2.71s/it]\n"
|
||
]
|
||
},
|
||
{
|
||
"data": {
|
||
"text/html": [
|
||
"<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\"><span style=\"color: #800080; text-decoration-color: #800080; font-weight: bold\">EvaluateResponse</span><span style=\"font-weight: bold\">(</span>\n",
|
||
"<span style=\"color: #7fbf7f; text-decoration-color: #7fbf7f\">│ </span><span style=\"color: #808000; text-decoration-color: #808000\">generations</span>=<span style=\"font-weight: bold\">[</span>\n",
|
||
"<span style=\"color: #7fbf7f; text-decoration-color: #7fbf7f\">│ │ </span><span style=\"font-weight: bold\">{</span><span style=\"color: #008000; text-decoration-color: #008000\">'generated_answer'</span>: <span style=\"color: #008000; text-decoration-color: #008000\">\"I'm not sure who received the IEEE Frank Rosenblatt Award in 2010.\"</span><span style=\"font-weight: bold\">}</span>,\n",
|
||
"<span style=\"color: #7fbf7f; text-decoration-color: #7fbf7f\">│ │ </span><span style=\"font-weight: bold\">{</span><span style=\"color: #008000; text-decoration-color: #008000\">'generated_answer'</span>: <span style=\"color: #008000; text-decoration-color: #008000\">\"I'm not aware of the information about the 2018 Jerlov Award recipient.\"</span><span style=\"font-weight: bold\">}</span>,\n",
|
||
"<span style=\"color: #7fbf7f; text-decoration-color: #7fbf7f\">│ │ </span><span style=\"font-weight: bold\">{</span>\n",
|
||
"<span style=\"color: #7fbf7f; text-decoration-color: #7fbf7f\">│ │ │ </span><span style=\"color: #008000; text-decoration-color: #008000\">'generated_answer'</span>: <span style=\"color: #008000; text-decoration-color: #008000\">\"Radcliffe College was a women's liberal arts college in Cambridge, Massachusetts. However, it merged with Harvard University in 1977 and is now known as the Radcliffe Institute for Advanced Study at Harvard University.\"</span>\n",
|
||
"<span style=\"color: #7fbf7f; text-decoration-color: #7fbf7f\">│ │ </span><span style=\"font-weight: bold\">}</span>,\n",
|
||
"<span style=\"color: #7fbf7f; text-decoration-color: #7fbf7f\">│ │ </span><span style=\"font-weight: bold\">{</span><span style=\"color: #008000; text-decoration-color: #008000\">'generated_answer'</span>: <span style=\"color: #008000; text-decoration-color: #008000\">'I am unable to verify in whose honor the Leipzig 1877 tournament was organized.'</span><span style=\"font-weight: bold\">}</span>,\n",
|
||
"<span style=\"color: #7fbf7f; text-decoration-color: #7fbf7f\">│ │ </span><span style=\"font-weight: bold\">{</span>\n",
|
||
"<span style=\"color: #7fbf7f; text-decoration-color: #7fbf7f\">│ │ │ </span><span style=\"color: #008000; text-decoration-color: #008000\">'generated_answer'</span>: <span style=\"color: #008000; text-decoration-color: #008000\">\"I am unable to verify what Empress Elizabeth of Austria's favorite sculpture depicted at her villa Achilleion at Corfu, according to Karl Küchler.\"</span>\n",
|
||
"<span style=\"color: #7fbf7f; text-decoration-color: #7fbf7f\">│ │ </span><span style=\"font-weight: bold\">}</span>\n",
|
||
"<span style=\"color: #7fbf7f; text-decoration-color: #7fbf7f\">│ </span><span style=\"font-weight: bold\">]</span>,\n",
|
||
"<span style=\"color: #7fbf7f; text-decoration-color: #7fbf7f\">│ </span><span style=\"color: #808000; text-decoration-color: #808000\">scores</span>=<span style=\"font-weight: bold\">{</span>\n",
|
||
"<span style=\"color: #7fbf7f; text-decoration-color: #7fbf7f\">│ │ </span><span style=\"color: #008000; text-decoration-color: #008000\">'llm-as-judge::405b-simpleqa'</span>: <span style=\"color: #800080; text-decoration-color: #800080; font-weight: bold\">ScoringResult</span><span style=\"font-weight: bold\">(</span>\n",
|
||
"<span style=\"color: #7fbf7f; text-decoration-color: #7fbf7f\">│ │ │ </span><span style=\"color: #808000; text-decoration-color: #808000\">aggregated_results</span>=<span style=\"font-weight: bold\">{</span><span style=\"color: #008000; text-decoration-color: #008000\">'categorical_count'</span>: <span style=\"font-weight: bold\">{</span><span style=\"color: #008000; text-decoration-color: #008000\">'categorical_count'</span>: <span style=\"font-weight: bold\">{</span><span style=\"color: #008000; text-decoration-color: #008000\">'A'</span>: <span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">1</span>, <span style=\"color: #008000; text-decoration-color: #008000\">'C'</span>: <span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">4</span><span style=\"font-weight: bold\">}}}</span>,\n",
|
||
"<span style=\"color: #7fbf7f; text-decoration-color: #7fbf7f\">│ │ │ </span><span style=\"color: #808000; text-decoration-color: #808000\">score_rows</span>=<span style=\"font-weight: bold\">[</span>\n",
|
||
"<span style=\"color: #7fbf7f; text-decoration-color: #7fbf7f\">│ │ │ │ </span><span style=\"font-weight: bold\">{</span><span style=\"color: #008000; text-decoration-color: #008000\">'score'</span>: <span style=\"color: #008000; text-decoration-color: #008000\">'C'</span>, <span style=\"color: #008000; text-decoration-color: #008000\">'judge_feedback'</span>: <span style=\"color: #008000; text-decoration-color: #008000\">'C'</span><span style=\"font-weight: bold\">}</span>,\n",
|
||
"<span style=\"color: #7fbf7f; text-decoration-color: #7fbf7f\">│ │ │ │ </span><span style=\"font-weight: bold\">{</span><span style=\"color: #008000; text-decoration-color: #008000\">'score'</span>: <span style=\"color: #008000; text-decoration-color: #008000\">'C'</span>, <span style=\"color: #008000; text-decoration-color: #008000\">'judge_feedback'</span>: <span style=\"color: #008000; text-decoration-color: #008000\">'C'</span><span style=\"font-weight: bold\">}</span>,\n",
|
||
"<span style=\"color: #7fbf7f; text-decoration-color: #7fbf7f\">│ │ │ │ </span><span style=\"font-weight: bold\">{</span><span style=\"color: #008000; text-decoration-color: #008000\">'score'</span>: <span style=\"color: #008000; text-decoration-color: #008000\">'A'</span>, <span style=\"color: #008000; text-decoration-color: #008000\">'judge_feedback'</span>: <span style=\"color: #008000; text-decoration-color: #008000\">'A'</span><span style=\"font-weight: bold\">}</span>,\n",
|
||
"<span style=\"color: #7fbf7f; text-decoration-color: #7fbf7f\">│ │ │ │ </span><span style=\"font-weight: bold\">{</span><span style=\"color: #008000; text-decoration-color: #008000\">'score'</span>: <span style=\"color: #008000; text-decoration-color: #008000\">'C'</span>, <span style=\"color: #008000; text-decoration-color: #008000\">'judge_feedback'</span>: <span style=\"color: #008000; text-decoration-color: #008000\">'C'</span><span style=\"font-weight: bold\">}</span>,\n",
|
||
"<span style=\"color: #7fbf7f; text-decoration-color: #7fbf7f\">│ │ │ │ </span><span style=\"font-weight: bold\">{</span><span style=\"color: #008000; text-decoration-color: #008000\">'score'</span>: <span style=\"color: #008000; text-decoration-color: #008000\">'C'</span>, <span style=\"color: #008000; text-decoration-color: #008000\">'judge_feedback'</span>: <span style=\"color: #008000; text-decoration-color: #008000\">'C'</span><span style=\"font-weight: bold\">}</span>\n",
|
||
"<span style=\"color: #7fbf7f; text-decoration-color: #7fbf7f\">│ │ │ </span><span style=\"font-weight: bold\">]</span>\n",
|
||
"<span style=\"color: #7fbf7f; text-decoration-color: #7fbf7f\">│ │ </span><span style=\"font-weight: bold\">)</span>\n",
|
||
"<span style=\"color: #7fbf7f; text-decoration-color: #7fbf7f\">│ </span><span style=\"font-weight: bold\">}</span>\n",
|
||
"<span style=\"font-weight: bold\">)</span>\n",
|
||
"</pre>\n"
|
||
],
|
||
"text/plain": [
|
||
"\u001b[1;35mEvaluateResponse\u001b[0m\u001b[1m(\u001b[0m\n",
|
||
"\u001b[2;32m│ \u001b[0m\u001b[33mgenerations\u001b[0m=\u001b[1m[\u001b[0m\n",
|
||
"\u001b[2;32m│ │ \u001b[0m\u001b[1m{\u001b[0m\u001b[32m'generated_answer'\u001b[0m: \u001b[32m\"I'm not sure who received the IEEE Frank Rosenblatt Award in 2010.\"\u001b[0m\u001b[1m}\u001b[0m,\n",
|
||
"\u001b[2;32m│ │ \u001b[0m\u001b[1m{\u001b[0m\u001b[32m'generated_answer'\u001b[0m: \u001b[32m\"I'm not aware of the information about the 2018 Jerlov Award recipient.\"\u001b[0m\u001b[1m}\u001b[0m,\n",
|
||
"\u001b[2;32m│ │ \u001b[0m\u001b[1m{\u001b[0m\n",
|
||
"\u001b[2;32m│ │ │ \u001b[0m\u001b[32m'generated_answer'\u001b[0m: \u001b[32m\"Radcliffe College was a women's liberal arts college in Cambridge, Massachusetts. However, it merged with Harvard University in 1977 and is now known as the Radcliffe Institute for Advanced Study at Harvard University.\"\u001b[0m\n",
|
||
"\u001b[2;32m│ │ \u001b[0m\u001b[1m}\u001b[0m,\n",
|
||
"\u001b[2;32m│ │ \u001b[0m\u001b[1m{\u001b[0m\u001b[32m'generated_answer'\u001b[0m: \u001b[32m'I am unable to verify in whose honor the Leipzig 1877 tournament was organized.'\u001b[0m\u001b[1m}\u001b[0m,\n",
|
||
"\u001b[2;32m│ │ \u001b[0m\u001b[1m{\u001b[0m\n",
|
||
"\u001b[2;32m│ │ │ \u001b[0m\u001b[32m'generated_answer'\u001b[0m: \u001b[32m\"I am unable to verify what Empress Elizabeth of Austria's favorite sculpture depicted at her villa Achilleion at Corfu, according to Karl Küchler.\"\u001b[0m\n",
|
||
"\u001b[2;32m│ │ \u001b[0m\u001b[1m}\u001b[0m\n",
|
||
"\u001b[2;32m│ \u001b[0m\u001b[1m]\u001b[0m,\n",
|
||
"\u001b[2;32m│ \u001b[0m\u001b[33mscores\u001b[0m=\u001b[1m{\u001b[0m\n",
|
||
"\u001b[2;32m│ │ \u001b[0m\u001b[32m'llm-as-judge::405b-simpleqa'\u001b[0m: \u001b[1;35mScoringResult\u001b[0m\u001b[1m(\u001b[0m\n",
|
||
"\u001b[2;32m│ │ │ \u001b[0m\u001b[33maggregated_results\u001b[0m=\u001b[1m{\u001b[0m\u001b[32m'categorical_count'\u001b[0m: \u001b[1m{\u001b[0m\u001b[32m'categorical_count'\u001b[0m: \u001b[1m{\u001b[0m\u001b[32m'A'\u001b[0m: \u001b[1;36m1\u001b[0m, \u001b[32m'C'\u001b[0m: \u001b[1;36m4\u001b[0m\u001b[1m}\u001b[0m\u001b[1m}\u001b[0m\u001b[1m}\u001b[0m,\n",
|
||
"\u001b[2;32m│ │ │ \u001b[0m\u001b[33mscore_rows\u001b[0m=\u001b[1m[\u001b[0m\n",
|
||
"\u001b[2;32m│ │ │ │ \u001b[0m\u001b[1m{\u001b[0m\u001b[32m'score'\u001b[0m: \u001b[32m'C'\u001b[0m, \u001b[32m'judge_feedback'\u001b[0m: \u001b[32m'C'\u001b[0m\u001b[1m}\u001b[0m,\n",
|
||
"\u001b[2;32m│ │ │ │ \u001b[0m\u001b[1m{\u001b[0m\u001b[32m'score'\u001b[0m: \u001b[32m'C'\u001b[0m, \u001b[32m'judge_feedback'\u001b[0m: \u001b[32m'C'\u001b[0m\u001b[1m}\u001b[0m,\n",
|
||
"\u001b[2;32m│ │ │ │ \u001b[0m\u001b[1m{\u001b[0m\u001b[32m'score'\u001b[0m: \u001b[32m'A'\u001b[0m, \u001b[32m'judge_feedback'\u001b[0m: \u001b[32m'A'\u001b[0m\u001b[1m}\u001b[0m,\n",
|
||
"\u001b[2;32m│ │ │ │ \u001b[0m\u001b[1m{\u001b[0m\u001b[32m'score'\u001b[0m: \u001b[32m'C'\u001b[0m, \u001b[32m'judge_feedback'\u001b[0m: \u001b[32m'C'\u001b[0m\u001b[1m}\u001b[0m,\n",
|
||
"\u001b[2;32m│ │ │ │ \u001b[0m\u001b[1m{\u001b[0m\u001b[32m'score'\u001b[0m: \u001b[32m'C'\u001b[0m, \u001b[32m'judge_feedback'\u001b[0m: \u001b[32m'C'\u001b[0m\u001b[1m}\u001b[0m\n",
|
||
"\u001b[2;32m│ │ │ \u001b[0m\u001b[1m]\u001b[0m\n",
|
||
"\u001b[2;32m│ │ \u001b[0m\u001b[1m)\u001b[0m\n",
|
||
"\u001b[2;32m│ \u001b[0m\u001b[1m}\u001b[0m\n",
|
||
"\u001b[1m)\u001b[0m\n"
|
||
]
|
||
},
|
||
"metadata": {},
|
||
"output_type": "display_data"
|
||
}
|
||
],
|
||
"source": [
|
||
"# register 405B as LLM Judge model\n",
|
||
"client.models.register(\n",
|
||
" model_id=\"meta-llama/Llama-3.1-405B-Instruct\",\n",
|
||
" provider_model_id=\"meta-llama/Meta-Llama-3.1-405B-Instruct-Turbo\",\n",
|
||
" provider_id=\"together\",\n",
|
||
")\n",
|
||
"\n",
|
||
"client.benchmarks.register(\n",
|
||
" benchmark_id=\"meta-reference::simpleqa\",\n",
|
||
" dataset_id=simpleqa_dataset_id,\n",
|
||
" scoring_functions=[\"llm-as-judge::405b-simpleqa\"],\n",
|
||
")\n",
|
||
"\n",
|
||
"response = client.eval.evaluate_rows(\n",
|
||
" benchmark_id=\"meta-reference::simpleqa\",\n",
|
||
" input_rows=eval_rows.data,\n",
|
||
" scoring_functions=[\"llm-as-judge::405b-simpleqa\"],\n",
|
||
" benchmark_config={\n",
|
||
" \"eval_candidate\": {\n",
|
||
" \"type\": \"model\",\n",
|
||
" \"model\": \"meta-llama/Llama-3.2-90B-Vision-Instruct\",\n",
|
||
" \"sampling_params\": {\n",
|
||
" \"strategy\": {\n",
|
||
" \"type\": \"greedy\",\n",
|
||
" },\n",
|
||
" \"max_tokens\": 4096,\n",
|
||
" \"repeat_penalty\": 1.0,\n",
|
||
" },\n",
|
||
" },\n",
|
||
" },\n",
|
||
")\n",
|
||
"pprint(response)\n"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {
|
||
"id": "eyziqe_Em6d6"
|
||
},
|
||
"source": [
|
||
"## 2. Agentic Evaluation\n",
|
||
"\n",
|
||
"- In this example, we will demonstrate how to evaluate a agent candidate served by Llama Stack via `/agent` API.\n",
|
||
"\n",
|
||
"- We will continue to use the SimpleQA dataset we used in previous example.\n",
|
||
"\n",
|
||
"- Instead of running evaluation on model, we will run the evaluation on a Search Agent with access to search tool. We will define our agent evaluation candidate through `AgentConfig`.\n",
|
||
"\n",
|
||
"> You will need to set the `TAVILY_SEARCH_API_KEY` in Secrets of this notebook."
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 27,
|
||
"metadata": {
|
||
"colab": {
|
||
"base_uri": "https://localhost:8080/",
|
||
"height": 538
|
||
},
|
||
"id": "mxLCsP4MvFqP",
|
||
"outputId": "8be2a32f-2a47-4443-8992-0000c23ca678"
|
||
},
|
||
"outputs": [
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"5it [00:06, 1.33s/it]\n"
|
||
]
|
||
},
|
||
{
|
||
"data": {
|
||
"text/html": [
|
||
"<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\"><span style=\"color: #800080; text-decoration-color: #800080; font-weight: bold\">EvaluateResponse</span><span style=\"font-weight: bold\">(</span>\n",
|
||
"<span style=\"color: #7fbf7f; text-decoration-color: #7fbf7f\">│ </span><span style=\"color: #808000; text-decoration-color: #808000\">generations</span>=<span style=\"font-weight: bold\">[</span>\n",
|
||
"<span style=\"color: #7fbf7f; text-decoration-color: #7fbf7f\">│ │ </span><span style=\"font-weight: bold\">{</span>\n",
|
||
"<span style=\"color: #7fbf7f; text-decoration-color: #7fbf7f\">│ │ │ </span><span style=\"color: #008000; text-decoration-color: #008000\">'generated_answer'</span>: <span style=\"color: #008000; text-decoration-color: #008000\">'The IEEE Frank Rosenblatt Award was given to Professor John Shawe-Taylor in 2010 for his contributions to the foundations of kernel methods.'</span>\n",
|
||
"<span style=\"color: #7fbf7f; text-decoration-color: #7fbf7f\">│ │ </span><span style=\"font-weight: bold\">}</span>,\n",
|
||
"<span style=\"color: #7fbf7f; text-decoration-color: #7fbf7f\">│ │ </span><span style=\"font-weight: bold\">{</span>\n",
|
||
"<span style=\"color: #7fbf7f; text-decoration-color: #7fbf7f\">│ │ │ </span><span style=\"color: #008000; text-decoration-color: #008000\">'generated_answer'</span>: <span style=\"color: #008000; text-decoration-color: #008000\">'The Jerlov Award is given by The Oceanography Society to recognize outstanding contributions to the field of ocean optics. The 2018 Jerlov Award was awarded to Dr. Kendall L. Carder.'</span>\n",
|
||
"<span style=\"color: #7fbf7f; text-decoration-color: #7fbf7f\">│ │ </span><span style=\"font-weight: bold\">}</span>,\n",
|
||
"<span style=\"color: #7fbf7f; text-decoration-color: #7fbf7f\">│ │ </span><span style=\"font-weight: bold\">{</span>\n",
|
||
"<span style=\"color: #7fbf7f; text-decoration-color: #7fbf7f\">│ │ │ </span><span style=\"color: #008000; text-decoration-color: #008000\">'generated_answer'</span>: <span style=\"color: #008000; text-decoration-color: #008000\">\"The women's liberal arts college in Cambridge, Massachusetts is Radcliffe College. However, in 1999, Radcliffe College merged with Harvard University to form the Radcliffe Institute for Advanced Study at Harvard University. The institute is still located in Cambridge, Massachusetts, and is dedicated to supporting women's education and research.\"</span>\n",
|
||
"<span style=\"color: #7fbf7f; text-decoration-color: #7fbf7f\">│ │ </span><span style=\"font-weight: bold\">}</span>,\n",
|
||
"<span style=\"color: #7fbf7f; text-decoration-color: #7fbf7f\">│ │ </span><span style=\"font-weight: bold\">{</span><span style=\"color: #008000; text-decoration-color: #008000\">'generated_answer'</span>: <span style=\"color: #008000; text-decoration-color: #008000\">'The Leipzig 1877 tournament was organized in honor of Adolf Anderssen.'</span><span style=\"font-weight: bold\">}</span>,\n",
|
||
"<span style=\"color: #7fbf7f; text-decoration-color: #7fbf7f\">│ │ </span><span style=\"font-weight: bold\">{</span>\n",
|
||
"<span style=\"color: #7fbf7f; text-decoration-color: #7fbf7f\">│ │ │ </span><span style=\"color: #008000; text-decoration-color: #008000\">'generated_answer'</span>: <span style=\"color: #008000; text-decoration-color: #008000\">\"According to Karl Küchler, Empress Elizabeth of Austria's favorite sculpture, which was made for her villa Achilleion at Corfu, depicted the Dying Achilles.\"</span>\n",
|
||
"<span style=\"color: #7fbf7f; text-decoration-color: #7fbf7f\">│ │ </span><span style=\"font-weight: bold\">}</span>\n",
|
||
"<span style=\"color: #7fbf7f; text-decoration-color: #7fbf7f\">│ </span><span style=\"font-weight: bold\">]</span>,\n",
|
||
"<span style=\"color: #7fbf7f; text-decoration-color: #7fbf7f\">│ </span><span style=\"color: #808000; text-decoration-color: #808000\">scores</span>=<span style=\"font-weight: bold\">{</span>\n",
|
||
"<span style=\"color: #7fbf7f; text-decoration-color: #7fbf7f\">│ │ </span><span style=\"color: #008000; text-decoration-color: #008000\">'llm-as-judge::405b-simpleqa'</span>: <span style=\"color: #800080; text-decoration-color: #800080; font-weight: bold\">ScoringResult</span><span style=\"font-weight: bold\">(</span>\n",
|
||
"<span style=\"color: #7fbf7f; text-decoration-color: #7fbf7f\">│ │ │ </span><span style=\"color: #808000; text-decoration-color: #808000\">aggregated_results</span>=<span style=\"font-weight: bold\">{}</span>,\n",
|
||
"<span style=\"color: #7fbf7f; text-decoration-color: #7fbf7f\">│ │ │ </span><span style=\"color: #808000; text-decoration-color: #808000\">score_rows</span>=<span style=\"font-weight: bold\">[</span>\n",
|
||
"<span style=\"color: #7fbf7f; text-decoration-color: #7fbf7f\">│ │ │ │ </span><span style=\"font-weight: bold\">{</span><span style=\"color: #008000; text-decoration-color: #008000\">'score'</span>: <span style=\"color: #008000; text-decoration-color: #008000\">'B'</span>, <span style=\"color: #008000; text-decoration-color: #008000\">'judge_feedback'</span>: <span style=\"color: #008000; text-decoration-color: #008000\">'B'</span><span style=\"font-weight: bold\">}</span>,\n",
|
||
"<span style=\"color: #7fbf7f; text-decoration-color: #7fbf7f\">│ │ │ │ </span><span style=\"font-weight: bold\">{</span><span style=\"color: #008000; text-decoration-color: #008000\">'score'</span>: <span style=\"color: #008000; text-decoration-color: #008000\">'B'</span>, <span style=\"color: #008000; text-decoration-color: #008000\">'judge_feedback'</span>: <span style=\"color: #008000; text-decoration-color: #008000\">'B'</span><span style=\"font-weight: bold\">}</span>,\n",
|
||
"<span style=\"color: #7fbf7f; text-decoration-color: #7fbf7f\">│ │ │ │ </span><span style=\"font-weight: bold\">{</span><span style=\"color: #008000; text-decoration-color: #008000\">'score'</span>: <span style=\"color: #008000; text-decoration-color: #008000\">'A'</span>, <span style=\"color: #008000; text-decoration-color: #008000\">'judge_feedback'</span>: <span style=\"color: #008000; text-decoration-color: #008000\">'A'</span><span style=\"font-weight: bold\">}</span>,\n",
|
||
"<span style=\"color: #7fbf7f; text-decoration-color: #7fbf7f\">│ │ │ │ </span><span style=\"font-weight: bold\">{</span><span style=\"color: #008000; text-decoration-color: #008000\">'score'</span>: <span style=\"color: #008000; text-decoration-color: #008000\">'A'</span>, <span style=\"color: #008000; text-decoration-color: #008000\">'judge_feedback'</span>: <span style=\"color: #008000; text-decoration-color: #008000\">'A'</span><span style=\"font-weight: bold\">}</span>,\n",
|
||
"<span style=\"color: #7fbf7f; text-decoration-color: #7fbf7f\">│ │ │ │ </span><span style=\"font-weight: bold\">{</span><span style=\"color: #008000; text-decoration-color: #008000\">'score'</span>: <span style=\"color: #008000; text-decoration-color: #008000\">'B'</span>, <span style=\"color: #008000; text-decoration-color: #008000\">'judge_feedback'</span>: <span style=\"color: #008000; text-decoration-color: #008000\">'B'</span><span style=\"font-weight: bold\">}</span>\n",
|
||
"<span style=\"color: #7fbf7f; text-decoration-color: #7fbf7f\">│ │ │ </span><span style=\"font-weight: bold\">]</span>\n",
|
||
"<span style=\"color: #7fbf7f; text-decoration-color: #7fbf7f\">│ │ </span><span style=\"font-weight: bold\">)</span>\n",
|
||
"<span style=\"color: #7fbf7f; text-decoration-color: #7fbf7f\">│ </span><span style=\"font-weight: bold\">}</span>\n",
|
||
"<span style=\"font-weight: bold\">)</span>\n",
|
||
"</pre>\n"
|
||
],
|
||
"text/plain": [
|
||
"\u001b[1;35mEvaluateResponse\u001b[0m\u001b[1m(\u001b[0m\n",
|
||
"\u001b[2;32m│ \u001b[0m\u001b[33mgenerations\u001b[0m=\u001b[1m[\u001b[0m\n",
|
||
"\u001b[2;32m│ │ \u001b[0m\u001b[1m{\u001b[0m\n",
|
||
"\u001b[2;32m│ │ │ \u001b[0m\u001b[32m'generated_answer'\u001b[0m: \u001b[32m'The IEEE Frank Rosenblatt Award was given to Professor John Shawe-Taylor in 2010 for his contributions to the foundations of kernel methods.'\u001b[0m\n",
|
||
"\u001b[2;32m│ │ \u001b[0m\u001b[1m}\u001b[0m,\n",
|
||
"\u001b[2;32m│ │ \u001b[0m\u001b[1m{\u001b[0m\n",
|
||
"\u001b[2;32m│ │ │ \u001b[0m\u001b[32m'generated_answer'\u001b[0m: \u001b[32m'The Jerlov Award is given by The Oceanography Society to recognize outstanding contributions to the field of ocean optics. The 2018 Jerlov Award was awarded to Dr. Kendall L. Carder.'\u001b[0m\n",
|
||
"\u001b[2;32m│ │ \u001b[0m\u001b[1m}\u001b[0m,\n",
|
||
"\u001b[2;32m│ │ \u001b[0m\u001b[1m{\u001b[0m\n",
|
||
"\u001b[2;32m│ │ │ \u001b[0m\u001b[32m'generated_answer'\u001b[0m: \u001b[32m\"The women's liberal arts college in Cambridge, Massachusetts is Radcliffe College. However, in 1999, Radcliffe College merged with Harvard University to form the Radcliffe Institute for Advanced Study at Harvard University. The institute is still located in Cambridge, Massachusetts, and is dedicated to supporting women's education and research.\"\u001b[0m\n",
|
||
"\u001b[2;32m│ │ \u001b[0m\u001b[1m}\u001b[0m,\n",
|
||
"\u001b[2;32m│ │ \u001b[0m\u001b[1m{\u001b[0m\u001b[32m'generated_answer'\u001b[0m: \u001b[32m'The Leipzig 1877 tournament was organized in honor of Adolf Anderssen.'\u001b[0m\u001b[1m}\u001b[0m,\n",
|
||
"\u001b[2;32m│ │ \u001b[0m\u001b[1m{\u001b[0m\n",
|
||
"\u001b[2;32m│ │ │ \u001b[0m\u001b[32m'generated_answer'\u001b[0m: \u001b[32m\"According to Karl Küchler, Empress Elizabeth of Austria's favorite sculpture, which was made for her villa Achilleion at Corfu, depicted the Dying Achilles.\"\u001b[0m\n",
|
||
"\u001b[2;32m│ │ \u001b[0m\u001b[1m}\u001b[0m\n",
|
||
"\u001b[2;32m│ \u001b[0m\u001b[1m]\u001b[0m,\n",
|
||
"\u001b[2;32m│ \u001b[0m\u001b[33mscores\u001b[0m=\u001b[1m{\u001b[0m\n",
|
||
"\u001b[2;32m│ │ \u001b[0m\u001b[32m'llm-as-judge::405b-simpleqa'\u001b[0m: \u001b[1;35mScoringResult\u001b[0m\u001b[1m(\u001b[0m\n",
|
||
"\u001b[2;32m│ │ │ \u001b[0m\u001b[33maggregated_results\u001b[0m=\u001b[1m{\u001b[0m\u001b[1m}\u001b[0m,\n",
|
||
"\u001b[2;32m│ │ │ \u001b[0m\u001b[33mscore_rows\u001b[0m=\u001b[1m[\u001b[0m\n",
|
||
"\u001b[2;32m│ │ │ │ \u001b[0m\u001b[1m{\u001b[0m\u001b[32m'score'\u001b[0m: \u001b[32m'B'\u001b[0m, \u001b[32m'judge_feedback'\u001b[0m: \u001b[32m'B'\u001b[0m\u001b[1m}\u001b[0m,\n",
|
||
"\u001b[2;32m│ │ │ │ \u001b[0m\u001b[1m{\u001b[0m\u001b[32m'score'\u001b[0m: \u001b[32m'B'\u001b[0m, \u001b[32m'judge_feedback'\u001b[0m: \u001b[32m'B'\u001b[0m\u001b[1m}\u001b[0m,\n",
|
||
"\u001b[2;32m│ │ │ │ \u001b[0m\u001b[1m{\u001b[0m\u001b[32m'score'\u001b[0m: \u001b[32m'A'\u001b[0m, \u001b[32m'judge_feedback'\u001b[0m: \u001b[32m'A'\u001b[0m\u001b[1m}\u001b[0m,\n",
|
||
"\u001b[2;32m│ │ │ │ \u001b[0m\u001b[1m{\u001b[0m\u001b[32m'score'\u001b[0m: \u001b[32m'A'\u001b[0m, \u001b[32m'judge_feedback'\u001b[0m: \u001b[32m'A'\u001b[0m\u001b[1m}\u001b[0m,\n",
|
||
"\u001b[2;32m│ │ │ │ \u001b[0m\u001b[1m{\u001b[0m\u001b[32m'score'\u001b[0m: \u001b[32m'B'\u001b[0m, \u001b[32m'judge_feedback'\u001b[0m: \u001b[32m'B'\u001b[0m\u001b[1m}\u001b[0m\n",
|
||
"\u001b[2;32m│ │ │ \u001b[0m\u001b[1m]\u001b[0m\n",
|
||
"\u001b[2;32m│ │ \u001b[0m\u001b[1m)\u001b[0m\n",
|
||
"\u001b[2;32m│ \u001b[0m\u001b[1m}\u001b[0m\n",
|
||
"\u001b[1m)\u001b[0m\n"
|
||
]
|
||
},
|
||
"metadata": {},
|
||
"output_type": "display_data"
|
||
}
|
||
],
|
||
"source": [
|
||
"agent_config = {\n",
|
||
" \"model\": \"meta-llama/Llama-3.3-70B-Instruct\",\n",
|
||
" \"instructions\": \"You are a helpful assistant that have access to tool to search the web. \",\n",
|
||
" \"sampling_params\": {\n",
|
||
" \"strategy\": {\n",
|
||
" \"type\": \"top_p\",\n",
|
||
" \"temperature\": 0.5,\n",
|
||
" \"top_p\": 0.9,\n",
|
||
" }\n",
|
||
" },\n",
|
||
" \"toolgroups\": [\n",
|
||
" \"builtin::websearch\",\n",
|
||
" ],\n",
|
||
" \"tool_choice\": \"auto\",\n",
|
||
" \"tool_prompt_format\": \"json\",\n",
|
||
" \"input_shields\": [],\n",
|
||
" \"output_shields\": [],\n",
|
||
" \"enable_session_persistence\": False,\n",
|
||
"}\n",
|
||
"\n",
|
||
"response = client.eval.evaluate_rows(\n",
|
||
" benchmark_id=\"meta-reference::simpleqa\",\n",
|
||
" input_rows=eval_rows.data,\n",
|
||
" scoring_functions=[\"llm-as-judge::405b-simpleqa\"],\n",
|
||
" benchmark_config={\n",
|
||
" \"eval_candidate\": {\n",
|
||
" \"type\": \"agent\",\n",
|
||
" \"config\": agent_config,\n",
|
||
" },\n",
|
||
" },\n",
|
||
")\n",
|
||
"pprint(response)\n"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": null,
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": []
|
||
}
|
||
],
|
||
"metadata": {
|
||
"colab": {
|
||
"collapsed_sections": [
|
||
"bxs0FJ1ckGa6",
|
||
"eyziqe_Em6d6"
|
||
],
|
||
"provenance": []
|
||
},
|
||
"kernelspec": {
|
||
"display_name": "master",
|
||
"language": "python",
|
||
"name": "python3"
|
||
},
|
||
"language_info": {
|
||
"codemirror_mode": {
|
||
"name": "ipython",
|
||
"version": 3
|
||
},
|
||
"file_extension": ".py",
|
||
"mimetype": "text/x-python",
|
||
"name": "python",
|
||
"nbconvert_exporter": "python",
|
||
"pygments_lexer": "ipython3",
|
||
"version": "3.10.16"
|
||
},
|
||
"widgets": {
|
||
"application/vnd.jupyter.widget-state+json": {
|
||
"017a81d7160240a398947545963856f5": {
|
||
"model_module": "@jupyter-widgets/controls",
|
||
"model_module_version": "1.5.0",
|
||
"model_name": "DescriptionStyleModel",
|
||
"state": {
|
||
"_model_module": "@jupyter-widgets/controls",
|
||
"_model_module_version": "1.5.0",
|
||
"_model_name": "DescriptionStyleModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/base",
|
||
"_view_module_version": "1.2.0",
|
||
"_view_name": "StyleView",
|
||
"description_width": ""
|
||
}
|
||
},
|
||
"0218397c573e4b28bfb4ffa66464d50f": {
|
||
"model_module": "@jupyter-widgets/base",
|
||
"model_module_version": "1.2.0",
|
||
"model_name": "LayoutModel",
|
||
"state": {
|
||
"_model_module": "@jupyter-widgets/base",
|
||
"_model_module_version": "1.2.0",
|
||
"_model_name": "LayoutModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/base",
|
||
"_view_module_version": "1.2.0",
|
||
"_view_name": "LayoutView",
|
||
"align_content": null,
|
||
"align_items": null,
|
||
"align_self": null,
|
||
"border": null,
|
||
"bottom": null,
|
||
"display": null,
|
||
"flex": null,
|
||
"flex_flow": null,
|
||
"grid_area": null,
|
||
"grid_auto_columns": null,
|
||
"grid_auto_flow": null,
|
||
"grid_auto_rows": null,
|
||
"grid_column": null,
|
||
"grid_gap": null,
|
||
"grid_row": null,
|
||
"grid_template_areas": null,
|
||
"grid_template_columns": null,
|
||
"grid_template_rows": null,
|
||
"height": null,
|
||
"justify_content": null,
|
||
"justify_items": null,
|
||
"left": null,
|
||
"margin": null,
|
||
"max_height": null,
|
||
"max_width": null,
|
||
"min_height": null,
|
||
"min_width": null,
|
||
"object_fit": null,
|
||
"object_position": null,
|
||
"order": null,
|
||
"overflow": null,
|
||
"overflow_x": null,
|
||
"overflow_y": null,
|
||
"padding": null,
|
||
"right": null,
|
||
"top": null,
|
||
"visibility": null,
|
||
"width": null
|
||
}
|
||
},
|
||
"04acde771d0a46699e1de07d9733d1a3": {
|
||
"model_module": "@jupyter-widgets/controls",
|
||
"model_module_version": "1.5.0",
|
||
"model_name": "FloatProgressModel",
|
||
"state": {
|
||
"_dom_classes": [],
|
||
"_model_module": "@jupyter-widgets/controls",
|
||
"_model_module_version": "1.5.0",
|
||
"_model_name": "FloatProgressModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/controls",
|
||
"_view_module_version": "1.5.0",
|
||
"_view_name": "ProgressView",
|
||
"bar_style": "success",
|
||
"description": "",
|
||
"description_tooltip": null,
|
||
"layout": "IPY_MODEL_399a6417b23e4593bb244ec3abb6b46d",
|
||
"max": 453677660,
|
||
"min": 0,
|
||
"orientation": "horizontal",
|
||
"style": "IPY_MODEL_53a321f36b0d4e08a74a5bcfbd04434b",
|
||
"value": 453677660
|
||
}
|
||
},
|
||
"083fd2549abd4b03bd41d8b92ec28f42": {
|
||
"model_module": "@jupyter-widgets/base",
|
||
"model_module_version": "1.2.0",
|
||
"model_name": "LayoutModel",
|
||
"state": {
|
||
"_model_module": "@jupyter-widgets/base",
|
||
"_model_module_version": "1.2.0",
|
||
"_model_name": "LayoutModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/base",
|
||
"_view_module_version": "1.2.0",
|
||
"_view_name": "LayoutView",
|
||
"align_content": null,
|
||
"align_items": null,
|
||
"align_self": null,
|
||
"border": null,
|
||
"bottom": null,
|
||
"display": null,
|
||
"flex": null,
|
||
"flex_flow": null,
|
||
"grid_area": null,
|
||
"grid_auto_columns": null,
|
||
"grid_auto_flow": null,
|
||
"grid_auto_rows": null,
|
||
"grid_column": null,
|
||
"grid_gap": null,
|
||
"grid_row": null,
|
||
"grid_template_areas": null,
|
||
"grid_template_columns": null,
|
||
"grid_template_rows": null,
|
||
"height": null,
|
||
"justify_content": null,
|
||
"justify_items": null,
|
||
"left": null,
|
||
"margin": null,
|
||
"max_height": null,
|
||
"max_width": null,
|
||
"min_height": null,
|
||
"min_width": null,
|
||
"object_fit": null,
|
||
"object_position": null,
|
||
"order": null,
|
||
"overflow": null,
|
||
"overflow_x": null,
|
||
"overflow_y": null,
|
||
"padding": null,
|
||
"right": null,
|
||
"top": null,
|
||
"visibility": null,
|
||
"width": null
|
||
}
|
||
},
|
||
"093bdcb608cf4b4fa37b0032a3915187": {
|
||
"model_module": "@jupyter-widgets/controls",
|
||
"model_module_version": "1.5.0",
|
||
"model_name": "DescriptionStyleModel",
|
||
"state": {
|
||
"_model_module": "@jupyter-widgets/controls",
|
||
"_model_module_version": "1.5.0",
|
||
"_model_name": "DescriptionStyleModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/base",
|
||
"_view_module_version": "1.2.0",
|
||
"_view_name": "StyleView",
|
||
"description_width": ""
|
||
}
|
||
},
|
||
"10c0d50d7c204de0b4c8e8f4d3ec0af5": {
|
||
"model_module": "@jupyter-widgets/controls",
|
||
"model_module_version": "1.5.0",
|
||
"model_name": "DescriptionStyleModel",
|
||
"state": {
|
||
"_model_module": "@jupyter-widgets/controls",
|
||
"_model_module_version": "1.5.0",
|
||
"_model_name": "DescriptionStyleModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/base",
|
||
"_view_module_version": "1.2.0",
|
||
"_view_name": "StyleView",
|
||
"description_width": ""
|
||
}
|
||
},
|
||
"117468099dbc42fdaafc08207eaac7ab": {
|
||
"model_module": "@jupyter-widgets/controls",
|
||
"model_module_version": "1.5.0",
|
||
"model_name": "DescriptionStyleModel",
|
||
"state": {
|
||
"_model_module": "@jupyter-widgets/controls",
|
||
"_model_module_version": "1.5.0",
|
||
"_model_name": "DescriptionStyleModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/base",
|
||
"_view_module_version": "1.2.0",
|
||
"_view_name": "StyleView",
|
||
"description_width": ""
|
||
}
|
||
},
|
||
"12c6f1180eeb4e9eb9037ea5dd24ec8e": {
|
||
"model_module": "@jupyter-widgets/base",
|
||
"model_module_version": "1.2.0",
|
||
"model_name": "LayoutModel",
|
||
"state": {
|
||
"_model_module": "@jupyter-widgets/base",
|
||
"_model_module_version": "1.2.0",
|
||
"_model_name": "LayoutModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/base",
|
||
"_view_module_version": "1.2.0",
|
||
"_view_name": "LayoutView",
|
||
"align_content": null,
|
||
"align_items": null,
|
||
"align_self": null,
|
||
"border": null,
|
||
"bottom": null,
|
||
"display": null,
|
||
"flex": null,
|
||
"flex_flow": null,
|
||
"grid_area": null,
|
||
"grid_auto_columns": null,
|
||
"grid_auto_flow": null,
|
||
"grid_auto_rows": null,
|
||
"grid_column": null,
|
||
"grid_gap": null,
|
||
"grid_row": null,
|
||
"grid_template_areas": null,
|
||
"grid_template_columns": null,
|
||
"grid_template_rows": null,
|
||
"height": null,
|
||
"justify_content": null,
|
||
"justify_items": null,
|
||
"left": null,
|
||
"margin": null,
|
||
"max_height": null,
|
||
"max_width": null,
|
||
"min_height": null,
|
||
"min_width": null,
|
||
"object_fit": null,
|
||
"object_position": null,
|
||
"order": null,
|
||
"overflow": null,
|
||
"overflow_x": null,
|
||
"overflow_y": null,
|
||
"padding": null,
|
||
"right": null,
|
||
"top": null,
|
||
"visibility": null,
|
||
"width": null
|
||
}
|
||
},
|
||
"158115266c284c4f8dbce3586151cbf1": {
|
||
"model_module": "@jupyter-widgets/controls",
|
||
"model_module_version": "1.5.0",
|
||
"model_name": "DescriptionStyleModel",
|
||
"state": {
|
||
"_model_module": "@jupyter-widgets/controls",
|
||
"_model_module_version": "1.5.0",
|
||
"_model_name": "DescriptionStyleModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/base",
|
||
"_view_module_version": "1.2.0",
|
||
"_view_name": "StyleView",
|
||
"description_width": ""
|
||
}
|
||
},
|
||
"179d41b80dc841e8a440482516b8bca5": {
|
||
"model_module": "@jupyter-widgets/base",
|
||
"model_module_version": "1.2.0",
|
||
"model_name": "LayoutModel",
|
||
"state": {
|
||
"_model_module": "@jupyter-widgets/base",
|
||
"_model_module_version": "1.2.0",
|
||
"_model_name": "LayoutModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/base",
|
||
"_view_module_version": "1.2.0",
|
||
"_view_name": "LayoutView",
|
||
"align_content": null,
|
||
"align_items": null,
|
||
"align_self": null,
|
||
"border": null,
|
||
"bottom": null,
|
||
"display": null,
|
||
"flex": null,
|
||
"flex_flow": null,
|
||
"grid_area": null,
|
||
"grid_auto_columns": null,
|
||
"grid_auto_flow": null,
|
||
"grid_auto_rows": null,
|
||
"grid_column": null,
|
||
"grid_gap": null,
|
||
"grid_row": null,
|
||
"grid_template_areas": null,
|
||
"grid_template_columns": null,
|
||
"grid_template_rows": null,
|
||
"height": null,
|
||
"justify_content": null,
|
||
"justify_items": null,
|
||
"left": null,
|
||
"margin": null,
|
||
"max_height": null,
|
||
"max_width": null,
|
||
"min_height": null,
|
||
"min_width": null,
|
||
"object_fit": null,
|
||
"object_position": null,
|
||
"order": null,
|
||
"overflow": null,
|
||
"overflow_x": null,
|
||
"overflow_y": null,
|
||
"padding": null,
|
||
"right": null,
|
||
"top": null,
|
||
"visibility": null,
|
||
"width": null
|
||
}
|
||
},
|
||
"1cf8eeb8d81c4e8a8e95dd43296a78b9": {
|
||
"model_module": "@jupyter-widgets/base",
|
||
"model_module_version": "1.2.0",
|
||
"model_name": "LayoutModel",
|
||
"state": {
|
||
"_model_module": "@jupyter-widgets/base",
|
||
"_model_module_version": "1.2.0",
|
||
"_model_name": "LayoutModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/base",
|
||
"_view_module_version": "1.2.0",
|
||
"_view_name": "LayoutView",
|
||
"align_content": null,
|
||
"align_items": null,
|
||
"align_self": null,
|
||
"border": null,
|
||
"bottom": null,
|
||
"display": null,
|
||
"flex": null,
|
||
"flex_flow": null,
|
||
"grid_area": null,
|
||
"grid_auto_columns": null,
|
||
"grid_auto_flow": null,
|
||
"grid_auto_rows": null,
|
||
"grid_column": null,
|
||
"grid_gap": null,
|
||
"grid_row": null,
|
||
"grid_template_areas": null,
|
||
"grid_template_columns": null,
|
||
"grid_template_rows": null,
|
||
"height": null,
|
||
"justify_content": null,
|
||
"justify_items": null,
|
||
"left": null,
|
||
"margin": null,
|
||
"max_height": null,
|
||
"max_width": null,
|
||
"min_height": null,
|
||
"min_width": null,
|
||
"object_fit": null,
|
||
"object_position": null,
|
||
"order": null,
|
||
"overflow": null,
|
||
"overflow_x": null,
|
||
"overflow_y": null,
|
||
"padding": null,
|
||
"right": null,
|
||
"top": null,
|
||
"visibility": null,
|
||
"width": null
|
||
}
|
||
},
|
||
"201bd914f9884e46b8e6df9d9900a6e8": {
|
||
"model_module": "@jupyter-widgets/base",
|
||
"model_module_version": "1.2.0",
|
||
"model_name": "LayoutModel",
|
||
"state": {
|
||
"_model_module": "@jupyter-widgets/base",
|
||
"_model_module_version": "1.2.0",
|
||
"_model_name": "LayoutModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/base",
|
||
"_view_module_version": "1.2.0",
|
||
"_view_name": "LayoutView",
|
||
"align_content": null,
|
||
"align_items": null,
|
||
"align_self": null,
|
||
"border": null,
|
||
"bottom": null,
|
||
"display": null,
|
||
"flex": null,
|
||
"flex_flow": null,
|
||
"grid_area": null,
|
||
"grid_auto_columns": null,
|
||
"grid_auto_flow": null,
|
||
"grid_auto_rows": null,
|
||
"grid_column": null,
|
||
"grid_gap": null,
|
||
"grid_row": null,
|
||
"grid_template_areas": null,
|
||
"grid_template_columns": null,
|
||
"grid_template_rows": null,
|
||
"height": null,
|
||
"justify_content": null,
|
||
"justify_items": null,
|
||
"left": null,
|
||
"margin": null,
|
||
"max_height": null,
|
||
"max_width": null,
|
||
"min_height": null,
|
||
"min_width": null,
|
||
"object_fit": null,
|
||
"object_position": null,
|
||
"order": null,
|
||
"overflow": null,
|
||
"overflow_x": null,
|
||
"overflow_y": null,
|
||
"padding": null,
|
||
"right": null,
|
||
"top": null,
|
||
"visibility": null,
|
||
"width": null
|
||
}
|
||
},
|
||
"21cf0e35ecd845a8b5e7c5ce241cf177": {
|
||
"model_module": "@jupyter-widgets/controls",
|
||
"model_module_version": "1.5.0",
|
||
"model_name": "DescriptionStyleModel",
|
||
"state": {
|
||
"_model_module": "@jupyter-widgets/controls",
|
||
"_model_module_version": "1.5.0",
|
||
"_model_name": "DescriptionStyleModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/base",
|
||
"_view_module_version": "1.2.0",
|
||
"_view_name": "StyleView",
|
||
"description_width": ""
|
||
}
|
||
},
|
||
"22b1ecd2eff14770bcfb0c62d3d4213f": {
|
||
"model_module": "@jupyter-widgets/controls",
|
||
"model_module_version": "1.5.0",
|
||
"model_name": "ProgressStyleModel",
|
||
"state": {
|
||
"_model_module": "@jupyter-widgets/controls",
|
||
"_model_module_version": "1.5.0",
|
||
"_model_name": "ProgressStyleModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/base",
|
||
"_view_module_version": "1.2.0",
|
||
"_view_name": "StyleView",
|
||
"bar_color": null,
|
||
"description_width": ""
|
||
}
|
||
},
|
||
"24e48376a72940679989a39a40bbe7f6": {
|
||
"model_module": "@jupyter-widgets/controls",
|
||
"model_module_version": "1.5.0",
|
||
"model_name": "HBoxModel",
|
||
"state": {
|
||
"_dom_classes": [],
|
||
"_model_module": "@jupyter-widgets/controls",
|
||
"_model_module_version": "1.5.0",
|
||
"_model_name": "HBoxModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/controls",
|
||
"_view_module_version": "1.5.0",
|
||
"_view_name": "HBoxView",
|
||
"box_style": "",
|
||
"children": [
|
||
"IPY_MODEL_484df732051540859bc7ac9cecadc83c",
|
||
"IPY_MODEL_4b33b1db50c34a2fa957d81a71a2a47f",
|
||
"IPY_MODEL_e51d501e2f994baba40345ad632eabee"
|
||
],
|
||
"layout": "IPY_MODEL_631a85e420b64e8cb6915af59c5ce08a"
|
||
}
|
||
},
|
||
"25529e7fd57049d2816d31f696eab1fd": {
|
||
"model_module": "@jupyter-widgets/base",
|
||
"model_module_version": "1.2.0",
|
||
"model_name": "LayoutModel",
|
||
"state": {
|
||
"_model_module": "@jupyter-widgets/base",
|
||
"_model_module_version": "1.2.0",
|
||
"_model_name": "LayoutModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/base",
|
||
"_view_module_version": "1.2.0",
|
||
"_view_name": "LayoutView",
|
||
"align_content": null,
|
||
"align_items": null,
|
||
"align_self": null,
|
||
"border": null,
|
||
"bottom": null,
|
||
"display": null,
|
||
"flex": null,
|
||
"flex_flow": null,
|
||
"grid_area": null,
|
||
"grid_auto_columns": null,
|
||
"grid_auto_flow": null,
|
||
"grid_auto_rows": null,
|
||
"grid_column": null,
|
||
"grid_gap": null,
|
||
"grid_row": null,
|
||
"grid_template_areas": null,
|
||
"grid_template_columns": null,
|
||
"grid_template_rows": null,
|
||
"height": null,
|
||
"justify_content": null,
|
||
"justify_items": null,
|
||
"left": null,
|
||
"margin": null,
|
||
"max_height": null,
|
||
"max_width": null,
|
||
"min_height": null,
|
||
"min_width": null,
|
||
"object_fit": null,
|
||
"object_position": null,
|
||
"order": null,
|
||
"overflow": null,
|
||
"overflow_x": null,
|
||
"overflow_y": null,
|
||
"padding": null,
|
||
"right": null,
|
||
"top": null,
|
||
"visibility": null,
|
||
"width": null
|
||
}
|
||
},
|
||
"2932b06afde9468a976eb6bfb072b80e": {
|
||
"model_module": "@jupyter-widgets/base",
|
||
"model_module_version": "1.2.0",
|
||
"model_name": "LayoutModel",
|
||
"state": {
|
||
"_model_module": "@jupyter-widgets/base",
|
||
"_model_module_version": "1.2.0",
|
||
"_model_name": "LayoutModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/base",
|
||
"_view_module_version": "1.2.0",
|
||
"_view_name": "LayoutView",
|
||
"align_content": null,
|
||
"align_items": null,
|
||
"align_self": null,
|
||
"border": null,
|
||
"bottom": null,
|
||
"display": null,
|
||
"flex": null,
|
||
"flex_flow": null,
|
||
"grid_area": null,
|
||
"grid_auto_columns": null,
|
||
"grid_auto_flow": null,
|
||
"grid_auto_rows": null,
|
||
"grid_column": null,
|
||
"grid_gap": null,
|
||
"grid_row": null,
|
||
"grid_template_areas": null,
|
||
"grid_template_columns": null,
|
||
"grid_template_rows": null,
|
||
"height": null,
|
||
"justify_content": null,
|
||
"justify_items": null,
|
||
"left": null,
|
||
"margin": null,
|
||
"max_height": null,
|
||
"max_width": null,
|
||
"min_height": null,
|
||
"min_width": null,
|
||
"object_fit": null,
|
||
"object_position": null,
|
||
"order": null,
|
||
"overflow": null,
|
||
"overflow_x": null,
|
||
"overflow_y": null,
|
||
"padding": null,
|
||
"right": null,
|
||
"top": null,
|
||
"visibility": null,
|
||
"width": null
|
||
}
|
||
},
|
||
"340fbbb4982c460992c88885e79b47db": {
|
||
"model_module": "@jupyter-widgets/controls",
|
||
"model_module_version": "1.5.0",
|
||
"model_name": "DescriptionStyleModel",
|
||
"state": {
|
||
"_model_module": "@jupyter-widgets/controls",
|
||
"_model_module_version": "1.5.0",
|
||
"_model_name": "DescriptionStyleModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/base",
|
||
"_view_module_version": "1.2.0",
|
||
"_view_name": "StyleView",
|
||
"description_width": ""
|
||
}
|
||
},
|
||
"399a6417b23e4593bb244ec3abb6b46d": {
|
||
"model_module": "@jupyter-widgets/base",
|
||
"model_module_version": "1.2.0",
|
||
"model_name": "LayoutModel",
|
||
"state": {
|
||
"_model_module": "@jupyter-widgets/base",
|
||
"_model_module_version": "1.2.0",
|
||
"_model_name": "LayoutModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/base",
|
||
"_view_module_version": "1.2.0",
|
||
"_view_name": "LayoutView",
|
||
"align_content": null,
|
||
"align_items": null,
|
||
"align_self": null,
|
||
"border": null,
|
||
"bottom": null,
|
||
"display": null,
|
||
"flex": null,
|
||
"flex_flow": null,
|
||
"grid_area": null,
|
||
"grid_auto_columns": null,
|
||
"grid_auto_flow": null,
|
||
"grid_auto_rows": null,
|
||
"grid_column": null,
|
||
"grid_gap": null,
|
||
"grid_row": null,
|
||
"grid_template_areas": null,
|
||
"grid_template_columns": null,
|
||
"grid_template_rows": null,
|
||
"height": null,
|
||
"justify_content": null,
|
||
"justify_items": null,
|
||
"left": null,
|
||
"margin": null,
|
||
"max_height": null,
|
||
"max_width": null,
|
||
"min_height": null,
|
||
"min_width": null,
|
||
"object_fit": null,
|
||
"object_position": null,
|
||
"order": null,
|
||
"overflow": null,
|
||
"overflow_x": null,
|
||
"overflow_y": null,
|
||
"padding": null,
|
||
"right": null,
|
||
"top": null,
|
||
"visibility": null,
|
||
"width": null
|
||
}
|
||
},
|
||
"3b70fa4e43ef4951862e119378c3c501": {
|
||
"model_module": "@jupyter-widgets/base",
|
||
"model_module_version": "1.2.0",
|
||
"model_name": "LayoutModel",
|
||
"state": {
|
||
"_model_module": "@jupyter-widgets/base",
|
||
"_model_module_version": "1.2.0",
|
||
"_model_name": "LayoutModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/base",
|
||
"_view_module_version": "1.2.0",
|
||
"_view_name": "LayoutView",
|
||
"align_content": null,
|
||
"align_items": null,
|
||
"align_self": null,
|
||
"border": null,
|
||
"bottom": null,
|
||
"display": null,
|
||
"flex": null,
|
||
"flex_flow": null,
|
||
"grid_area": null,
|
||
"grid_auto_columns": null,
|
||
"grid_auto_flow": null,
|
||
"grid_auto_rows": null,
|
||
"grid_column": null,
|
||
"grid_gap": null,
|
||
"grid_row": null,
|
||
"grid_template_areas": null,
|
||
"grid_template_columns": null,
|
||
"grid_template_rows": null,
|
||
"height": null,
|
||
"justify_content": null,
|
||
"justify_items": null,
|
||
"left": null,
|
||
"margin": null,
|
||
"max_height": null,
|
||
"max_width": null,
|
||
"min_height": null,
|
||
"min_width": null,
|
||
"object_fit": null,
|
||
"object_position": null,
|
||
"order": null,
|
||
"overflow": null,
|
||
"overflow_x": null,
|
||
"overflow_y": null,
|
||
"padding": null,
|
||
"right": null,
|
||
"top": null,
|
||
"visibility": null,
|
||
"width": null
|
||
}
|
||
},
|
||
"3d0344a9cc744e369da1b6b7ea1b3be8": {
|
||
"model_module": "@jupyter-widgets/base",
|
||
"model_module_version": "1.2.0",
|
||
"model_name": "LayoutModel",
|
||
"state": {
|
||
"_model_module": "@jupyter-widgets/base",
|
||
"_model_module_version": "1.2.0",
|
||
"_model_name": "LayoutModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/base",
|
||
"_view_module_version": "1.2.0",
|
||
"_view_name": "LayoutView",
|
||
"align_content": null,
|
||
"align_items": null,
|
||
"align_self": null,
|
||
"border": null,
|
||
"bottom": null,
|
||
"display": null,
|
||
"flex": null,
|
||
"flex_flow": null,
|
||
"grid_area": null,
|
||
"grid_auto_columns": null,
|
||
"grid_auto_flow": null,
|
||
"grid_auto_rows": null,
|
||
"grid_column": null,
|
||
"grid_gap": null,
|
||
"grid_row": null,
|
||
"grid_template_areas": null,
|
||
"grid_template_columns": null,
|
||
"grid_template_rows": null,
|
||
"height": null,
|
||
"justify_content": null,
|
||
"justify_items": null,
|
||
"left": null,
|
||
"margin": null,
|
||
"max_height": null,
|
||
"max_width": null,
|
||
"min_height": null,
|
||
"min_width": null,
|
||
"object_fit": null,
|
||
"object_position": null,
|
||
"order": null,
|
||
"overflow": null,
|
||
"overflow_x": null,
|
||
"overflow_y": null,
|
||
"padding": null,
|
||
"right": null,
|
||
"top": null,
|
||
"visibility": null,
|
||
"width": null
|
||
}
|
||
},
|
||
"3e26bc24a3e44b4582f57913bdf98de4": {
|
||
"model_module": "@jupyter-widgets/controls",
|
||
"model_module_version": "1.5.0",
|
||
"model_name": "DescriptionStyleModel",
|
||
"state": {
|
||
"_model_module": "@jupyter-widgets/controls",
|
||
"_model_module_version": "1.5.0",
|
||
"_model_name": "DescriptionStyleModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/base",
|
||
"_view_module_version": "1.2.0",
|
||
"_view_name": "StyleView",
|
||
"description_width": ""
|
||
}
|
||
},
|
||
"44f585990aa244d8ba61f892dc1ccc1c": {
|
||
"model_module": "@jupyter-widgets/controls",
|
||
"model_module_version": "1.5.0",
|
||
"model_name": "HBoxModel",
|
||
"state": {
|
||
"_dom_classes": [],
|
||
"_model_module": "@jupyter-widgets/controls",
|
||
"_model_module_version": "1.5.0",
|
||
"_model_name": "HBoxModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/controls",
|
||
"_view_module_version": "1.5.0",
|
||
"_view_name": "HBoxView",
|
||
"box_style": "",
|
||
"children": [
|
||
"IPY_MODEL_4fc59928a0544f95a4438b37d19ca437",
|
||
"IPY_MODEL_fb644d47049f495397d0e60597c86ea3",
|
||
"IPY_MODEL_78632694ff694442bc3fefc2cac2cbf5"
|
||
],
|
||
"layout": "IPY_MODEL_083fd2549abd4b03bd41d8b92ec28f42"
|
||
}
|
||
},
|
||
"47f876cf41484d55b645e1e99337423a": {
|
||
"model_module": "@jupyter-widgets/base",
|
||
"model_module_version": "1.2.0",
|
||
"model_name": "LayoutModel",
|
||
"state": {
|
||
"_model_module": "@jupyter-widgets/base",
|
||
"_model_module_version": "1.2.0",
|
||
"_model_name": "LayoutModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/base",
|
||
"_view_module_version": "1.2.0",
|
||
"_view_name": "LayoutView",
|
||
"align_content": null,
|
||
"align_items": null,
|
||
"align_self": null,
|
||
"border": null,
|
||
"bottom": null,
|
||
"display": null,
|
||
"flex": null,
|
||
"flex_flow": null,
|
||
"grid_area": null,
|
||
"grid_auto_columns": null,
|
||
"grid_auto_flow": null,
|
||
"grid_auto_rows": null,
|
||
"grid_column": null,
|
||
"grid_gap": null,
|
||
"grid_row": null,
|
||
"grid_template_areas": null,
|
||
"grid_template_columns": null,
|
||
"grid_template_rows": null,
|
||
"height": null,
|
||
"justify_content": null,
|
||
"justify_items": null,
|
||
"left": null,
|
||
"margin": null,
|
||
"max_height": null,
|
||
"max_width": null,
|
||
"min_height": null,
|
||
"min_width": null,
|
||
"object_fit": null,
|
||
"object_position": null,
|
||
"order": null,
|
||
"overflow": null,
|
||
"overflow_x": null,
|
||
"overflow_y": null,
|
||
"padding": null,
|
||
"right": null,
|
||
"top": null,
|
||
"visibility": null,
|
||
"width": null
|
||
}
|
||
},
|
||
"484df732051540859bc7ac9cecadc83c": {
|
||
"model_module": "@jupyter-widgets/controls",
|
||
"model_module_version": "1.5.0",
|
||
"model_name": "HTMLModel",
|
||
"state": {
|
||
"_dom_classes": [],
|
||
"_model_module": "@jupyter-widgets/controls",
|
||
"_model_module_version": "1.5.0",
|
||
"_model_name": "HTMLModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/controls",
|
||
"_view_module_version": "1.5.0",
|
||
"_view_name": "HTMLView",
|
||
"description": "",
|
||
"description_tooltip": null,
|
||
"layout": "IPY_MODEL_70af9cb2838c4a92bd67f8cb5c98d97f",
|
||
"placeholder": "",
|
||
"style": "IPY_MODEL_158115266c284c4f8dbce3586151cbf1",
|
||
"value": "Generating test split: 100%"
|
||
}
|
||
},
|
||
"4b33b1db50c34a2fa957d81a71a2a47f": {
|
||
"model_module": "@jupyter-widgets/controls",
|
||
"model_module_version": "1.5.0",
|
||
"model_name": "FloatProgressModel",
|
||
"state": {
|
||
"_dom_classes": [],
|
||
"_model_module": "@jupyter-widgets/controls",
|
||
"_model_module_version": "1.5.0",
|
||
"_model_name": "FloatProgressModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/controls",
|
||
"_view_module_version": "1.5.0",
|
||
"_view_name": "ProgressView",
|
||
"bar_style": "success",
|
||
"description": "",
|
||
"description_tooltip": null,
|
||
"layout": "IPY_MODEL_ce5019b36cde44c58c5f596dbb59a2f8",
|
||
"max": 287,
|
||
"min": 0,
|
||
"orientation": "horizontal",
|
||
"style": "IPY_MODEL_b90d660ca8584ba1815a3c66b420c079",
|
||
"value": 287
|
||
}
|
||
},
|
||
"4bc266d49a6741a88350e029d101425b": {
|
||
"model_module": "@jupyter-widgets/controls",
|
||
"model_module_version": "1.5.0",
|
||
"model_name": "HTMLModel",
|
||
"state": {
|
||
"_dom_classes": [],
|
||
"_model_module": "@jupyter-widgets/controls",
|
||
"_model_module_version": "1.5.0",
|
||
"_model_name": "HTMLModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/controls",
|
||
"_view_module_version": "1.5.0",
|
||
"_view_name": "HTMLView",
|
||
"description": "",
|
||
"description_tooltip": null,
|
||
"layout": "IPY_MODEL_47f876cf41484d55b645e1e99337423a",
|
||
"placeholder": "",
|
||
"style": "IPY_MODEL_340fbbb4982c460992c88885e79b47db",
|
||
"value": " 461M/461M [00:11<00:00, 31.2MB/s]"
|
||
}
|
||
},
|
||
"4f788a7920c346f3b42900825bd6711a": {
|
||
"model_module": "@jupyter-widgets/controls",
|
||
"model_module_version": "1.5.0",
|
||
"model_name": "HBoxModel",
|
||
"state": {
|
||
"_dom_classes": [],
|
||
"_model_module": "@jupyter-widgets/controls",
|
||
"_model_module_version": "1.5.0",
|
||
"_model_name": "HBoxModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/controls",
|
||
"_view_module_version": "1.5.0",
|
||
"_view_name": "HBoxView",
|
||
"box_style": "",
|
||
"children": [
|
||
"IPY_MODEL_8e9358ec7d474808bb96c13e13489c67",
|
||
"IPY_MODEL_f0dfeee2a8d64dedbc8ef55ad4e69932",
|
||
"IPY_MODEL_9437b707bf1a4847a50aafeb4252dab5"
|
||
],
|
||
"layout": "IPY_MODEL_f255707788704a76bd1651f26a22402d"
|
||
}
|
||
},
|
||
"4fc59928a0544f95a4438b37d19ca437": {
|
||
"model_module": "@jupyter-widgets/controls",
|
||
"model_module_version": "1.5.0",
|
||
"model_name": "HTMLModel",
|
||
"state": {
|
||
"_dom_classes": [],
|
||
"_model_module": "@jupyter-widgets/controls",
|
||
"_model_module_version": "1.5.0",
|
||
"_model_name": "HTMLModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/controls",
|
||
"_view_module_version": "1.5.0",
|
||
"_view_name": "HTMLView",
|
||
"description": "",
|
||
"description_tooltip": null,
|
||
"layout": "IPY_MODEL_611d6472a58d419583acc416767a4c90",
|
||
"placeholder": "",
|
||
"style": "IPY_MODEL_98c5ce434cff454eaaa3f0fd3498183a",
|
||
"value": "validation-00000-of-00001.parquet: 100%"
|
||
}
|
||
},
|
||
"4fed5720f30b4b3cbbc606a4f25e223b": {
|
||
"model_module": "@jupyter-widgets/controls",
|
||
"model_module_version": "1.5.0",
|
||
"model_name": "HBoxModel",
|
||
"state": {
|
||
"_dom_classes": [],
|
||
"_model_module": "@jupyter-widgets/controls",
|
||
"_model_module_version": "1.5.0",
|
||
"_model_name": "HBoxModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/controls",
|
||
"_view_module_version": "1.5.0",
|
||
"_view_name": "HBoxView",
|
||
"box_style": "",
|
||
"children": [
|
||
"IPY_MODEL_6fa866b9971542739b0ed26d90ceac80",
|
||
"IPY_MODEL_fe7553b513954cc68c427b5d9d260b33",
|
||
"IPY_MODEL_4bc266d49a6741a88350e029d101425b"
|
||
],
|
||
"layout": "IPY_MODEL_da57445f98e7427589962836c2b4287e"
|
||
}
|
||
},
|
||
"4ff3a6aaf706460bbba01b248b93000e": {
|
||
"model_module": "@jupyter-widgets/base",
|
||
"model_module_version": "1.2.0",
|
||
"model_name": "LayoutModel",
|
||
"state": {
|
||
"_model_module": "@jupyter-widgets/base",
|
||
"_model_module_version": "1.2.0",
|
||
"_model_name": "LayoutModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/base",
|
||
"_view_module_version": "1.2.0",
|
||
"_view_name": "LayoutView",
|
||
"align_content": null,
|
||
"align_items": null,
|
||
"align_self": null,
|
||
"border": null,
|
||
"bottom": null,
|
||
"display": null,
|
||
"flex": null,
|
||
"flex_flow": null,
|
||
"grid_area": null,
|
||
"grid_auto_columns": null,
|
||
"grid_auto_flow": null,
|
||
"grid_auto_rows": null,
|
||
"grid_column": null,
|
||
"grid_gap": null,
|
||
"grid_row": null,
|
||
"grid_template_areas": null,
|
||
"grid_template_columns": null,
|
||
"grid_template_rows": null,
|
||
"height": null,
|
||
"justify_content": null,
|
||
"justify_items": null,
|
||
"left": null,
|
||
"margin": null,
|
||
"max_height": null,
|
||
"max_width": null,
|
||
"min_height": null,
|
||
"min_width": null,
|
||
"object_fit": null,
|
||
"object_position": null,
|
||
"order": null,
|
||
"overflow": null,
|
||
"overflow_x": null,
|
||
"overflow_y": null,
|
||
"padding": null,
|
||
"right": null,
|
||
"top": null,
|
||
"visibility": null,
|
||
"width": null
|
||
}
|
||
},
|
||
"500a072c09da41759cb2c942a16d8429": {
|
||
"model_module": "@jupyter-widgets/controls",
|
||
"model_module_version": "1.5.0",
|
||
"model_name": "FloatProgressModel",
|
||
"state": {
|
||
"_dom_classes": [],
|
||
"_model_module": "@jupyter-widgets/controls",
|
||
"_model_module_version": "1.5.0",
|
||
"_model_name": "FloatProgressModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/controls",
|
||
"_view_module_version": "1.5.0",
|
||
"_view_name": "ProgressView",
|
||
"bar_style": "success",
|
||
"description": "",
|
||
"description_tooltip": null,
|
||
"layout": "IPY_MODEL_e6d6e516cd03452297d80c36376855dd",
|
||
"max": 29453850,
|
||
"min": 0,
|
||
"orientation": "horizontal",
|
||
"style": "IPY_MODEL_6ae0fadb3aeb4be18a9ab3279fb23145",
|
||
"value": 29453850
|
||
}
|
||
},
|
||
"52150fd494d24eea89b5232077509355": {
|
||
"model_module": "@jupyter-widgets/controls",
|
||
"model_module_version": "1.5.0",
|
||
"model_name": "HTMLModel",
|
||
"state": {
|
||
"_dom_classes": [],
|
||
"_model_module": "@jupyter-widgets/controls",
|
||
"_model_module_version": "1.5.0",
|
||
"_model_name": "HTMLModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/controls",
|
||
"_view_module_version": "1.5.0",
|
||
"_view_name": "HTMLView",
|
||
"description": "",
|
||
"description_tooltip": null,
|
||
"layout": "IPY_MODEL_b09b2690894749339a9172e5ad0a9b75",
|
||
"placeholder": "",
|
||
"style": "IPY_MODEL_cbed38801163438d891879b756f5baab",
|
||
"value": "test-00001-of-00003.parquet: 100%"
|
||
}
|
||
},
|
||
"53a321f36b0d4e08a74a5bcfbd04434b": {
|
||
"model_module": "@jupyter-widgets/controls",
|
||
"model_module_version": "1.5.0",
|
||
"model_name": "ProgressStyleModel",
|
||
"state": {
|
||
"_model_module": "@jupyter-widgets/controls",
|
||
"_model_module_version": "1.5.0",
|
||
"_model_name": "ProgressStyleModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/base",
|
||
"_view_module_version": "1.2.0",
|
||
"_view_name": "StyleView",
|
||
"bar_color": null,
|
||
"description_width": ""
|
||
}
|
||
},
|
||
"5b0b5a3f79e94c51aae48fe0dd34ba0e": {
|
||
"model_module": "@jupyter-widgets/controls",
|
||
"model_module_version": "1.5.0",
|
||
"model_name": "ProgressStyleModel",
|
||
"state": {
|
||
"_model_module": "@jupyter-widgets/controls",
|
||
"_model_module_version": "1.5.0",
|
||
"_model_name": "ProgressStyleModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/base",
|
||
"_view_module_version": "1.2.0",
|
||
"_view_name": "StyleView",
|
||
"bar_color": null,
|
||
"description_width": ""
|
||
}
|
||
},
|
||
"611d6472a58d419583acc416767a4c90": {
|
||
"model_module": "@jupyter-widgets/base",
|
||
"model_module_version": "1.2.0",
|
||
"model_name": "LayoutModel",
|
||
"state": {
|
||
"_model_module": "@jupyter-widgets/base",
|
||
"_model_module_version": "1.2.0",
|
||
"_model_name": "LayoutModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/base",
|
||
"_view_module_version": "1.2.0",
|
||
"_view_name": "LayoutView",
|
||
"align_content": null,
|
||
"align_items": null,
|
||
"align_self": null,
|
||
"border": null,
|
||
"bottom": null,
|
||
"display": null,
|
||
"flex": null,
|
||
"flex_flow": null,
|
||
"grid_area": null,
|
||
"grid_auto_columns": null,
|
||
"grid_auto_flow": null,
|
||
"grid_auto_rows": null,
|
||
"grid_column": null,
|
||
"grid_gap": null,
|
||
"grid_row": null,
|
||
"grid_template_areas": null,
|
||
"grid_template_columns": null,
|
||
"grid_template_rows": null,
|
||
"height": null,
|
||
"justify_content": null,
|
||
"justify_items": null,
|
||
"left": null,
|
||
"margin": null,
|
||
"max_height": null,
|
||
"max_width": null,
|
||
"min_height": null,
|
||
"min_width": null,
|
||
"object_fit": null,
|
||
"object_position": null,
|
||
"order": null,
|
||
"overflow": null,
|
||
"overflow_x": null,
|
||
"overflow_y": null,
|
||
"padding": null,
|
||
"right": null,
|
||
"top": null,
|
||
"visibility": null,
|
||
"width": null
|
||
}
|
||
},
|
||
"626ef2f811ae4e119a0e85cebe92b91d": {
|
||
"model_module": "@jupyter-widgets/base",
|
||
"model_module_version": "1.2.0",
|
||
"model_name": "LayoutModel",
|
||
"state": {
|
||
"_model_module": "@jupyter-widgets/base",
|
||
"_model_module_version": "1.2.0",
|
||
"_model_name": "LayoutModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/base",
|
||
"_view_module_version": "1.2.0",
|
||
"_view_name": "LayoutView",
|
||
"align_content": null,
|
||
"align_items": null,
|
||
"align_self": null,
|
||
"border": null,
|
||
"bottom": null,
|
||
"display": null,
|
||
"flex": null,
|
||
"flex_flow": null,
|
||
"grid_area": null,
|
||
"grid_auto_columns": null,
|
||
"grid_auto_flow": null,
|
||
"grid_auto_rows": null,
|
||
"grid_column": null,
|
||
"grid_gap": null,
|
||
"grid_row": null,
|
||
"grid_template_areas": null,
|
||
"grid_template_columns": null,
|
||
"grid_template_rows": null,
|
||
"height": null,
|
||
"justify_content": null,
|
||
"justify_items": null,
|
||
"left": null,
|
||
"margin": null,
|
||
"max_height": null,
|
||
"max_width": null,
|
||
"min_height": null,
|
||
"min_width": null,
|
||
"object_fit": null,
|
||
"object_position": null,
|
||
"order": null,
|
||
"overflow": null,
|
||
"overflow_x": null,
|
||
"overflow_y": null,
|
||
"padding": null,
|
||
"right": null,
|
||
"top": null,
|
||
"visibility": null,
|
||
"width": null
|
||
}
|
||
},
|
||
"631a85e420b64e8cb6915af59c5ce08a": {
|
||
"model_module": "@jupyter-widgets/base",
|
||
"model_module_version": "1.2.0",
|
||
"model_name": "LayoutModel",
|
||
"state": {
|
||
"_model_module": "@jupyter-widgets/base",
|
||
"_model_module_version": "1.2.0",
|
||
"_model_name": "LayoutModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/base",
|
||
"_view_module_version": "1.2.0",
|
||
"_view_name": "LayoutView",
|
||
"align_content": null,
|
||
"align_items": null,
|
||
"align_self": null,
|
||
"border": null,
|
||
"bottom": null,
|
||
"display": null,
|
||
"flex": null,
|
||
"flex_flow": null,
|
||
"grid_area": null,
|
||
"grid_auto_columns": null,
|
||
"grid_auto_flow": null,
|
||
"grid_auto_rows": null,
|
||
"grid_column": null,
|
||
"grid_gap": null,
|
||
"grid_row": null,
|
||
"grid_template_areas": null,
|
||
"grid_template_columns": null,
|
||
"grid_template_rows": null,
|
||
"height": null,
|
||
"justify_content": null,
|
||
"justify_items": null,
|
||
"left": null,
|
||
"margin": null,
|
||
"max_height": null,
|
||
"max_width": null,
|
||
"min_height": null,
|
||
"min_width": null,
|
||
"object_fit": null,
|
||
"object_position": null,
|
||
"order": null,
|
||
"overflow": null,
|
||
"overflow_x": null,
|
||
"overflow_y": null,
|
||
"padding": null,
|
||
"right": null,
|
||
"top": null,
|
||
"visibility": null,
|
||
"width": null
|
||
}
|
||
},
|
||
"6ae0fadb3aeb4be18a9ab3279fb23145": {
|
||
"model_module": "@jupyter-widgets/controls",
|
||
"model_module_version": "1.5.0",
|
||
"model_name": "ProgressStyleModel",
|
||
"state": {
|
||
"_model_module": "@jupyter-widgets/controls",
|
||
"_model_module_version": "1.5.0",
|
||
"_model_name": "ProgressStyleModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/base",
|
||
"_view_module_version": "1.2.0",
|
||
"_view_name": "StyleView",
|
||
"bar_color": null,
|
||
"description_width": ""
|
||
}
|
||
},
|
||
"6c0a6a7fa8ca4e1c961a36305f0e7638": {
|
||
"model_module": "@jupyter-widgets/controls",
|
||
"model_module_version": "1.5.0",
|
||
"model_name": "DescriptionStyleModel",
|
||
"state": {
|
||
"_model_module": "@jupyter-widgets/controls",
|
||
"_model_module_version": "1.5.0",
|
||
"_model_name": "DescriptionStyleModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/base",
|
||
"_view_module_version": "1.2.0",
|
||
"_view_name": "StyleView",
|
||
"description_width": ""
|
||
}
|
||
},
|
||
"6fa866b9971542739b0ed26d90ceac80": {
|
||
"model_module": "@jupyter-widgets/controls",
|
||
"model_module_version": "1.5.0",
|
||
"model_name": "HTMLModel",
|
||
"state": {
|
||
"_dom_classes": [],
|
||
"_model_module": "@jupyter-widgets/controls",
|
||
"_model_module_version": "1.5.0",
|
||
"_model_name": "HTMLModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/controls",
|
||
"_view_module_version": "1.5.0",
|
||
"_view_name": "HTMLView",
|
||
"description": "",
|
||
"description_tooltip": null,
|
||
"layout": "IPY_MODEL_ad1fb86cc1f94fd9911eda03cf4a3783",
|
||
"placeholder": "",
|
||
"style": "IPY_MODEL_fdefb51ad4c4418b98c5826126558011",
|
||
"value": "test-00000-of-00003.parquet: 100%"
|
||
}
|
||
},
|
||
"70af9cb2838c4a92bd67f8cb5c98d97f": {
|
||
"model_module": "@jupyter-widgets/base",
|
||
"model_module_version": "1.2.0",
|
||
"model_name": "LayoutModel",
|
||
"state": {
|
||
"_model_module": "@jupyter-widgets/base",
|
||
"_model_module_version": "1.2.0",
|
||
"_model_name": "LayoutModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/base",
|
||
"_view_module_version": "1.2.0",
|
||
"_view_name": "LayoutView",
|
||
"align_content": null,
|
||
"align_items": null,
|
||
"align_self": null,
|
||
"border": null,
|
||
"bottom": null,
|
||
"display": null,
|
||
"flex": null,
|
||
"flex_flow": null,
|
||
"grid_area": null,
|
||
"grid_auto_columns": null,
|
||
"grid_auto_flow": null,
|
||
"grid_auto_rows": null,
|
||
"grid_column": null,
|
||
"grid_gap": null,
|
||
"grid_row": null,
|
||
"grid_template_areas": null,
|
||
"grid_template_columns": null,
|
||
"grid_template_rows": null,
|
||
"height": null,
|
||
"justify_content": null,
|
||
"justify_items": null,
|
||
"left": null,
|
||
"margin": null,
|
||
"max_height": null,
|
||
"max_width": null,
|
||
"min_height": null,
|
||
"min_width": null,
|
||
"object_fit": null,
|
||
"object_position": null,
|
||
"order": null,
|
||
"overflow": null,
|
||
"overflow_x": null,
|
||
"overflow_y": null,
|
||
"padding": null,
|
||
"right": null,
|
||
"top": null,
|
||
"visibility": null,
|
||
"width": null
|
||
}
|
||
},
|
||
"737116977f474ec0b68d88a40fd1086c": {
|
||
"model_module": "@jupyter-widgets/controls",
|
||
"model_module_version": "1.5.0",
|
||
"model_name": "DescriptionStyleModel",
|
||
"state": {
|
||
"_model_module": "@jupyter-widgets/controls",
|
||
"_model_module_version": "1.5.0",
|
||
"_model_name": "DescriptionStyleModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/base",
|
||
"_view_module_version": "1.2.0",
|
||
"_view_name": "StyleView",
|
||
"description_width": ""
|
||
}
|
||
},
|
||
"74b58e4647644c9daf9af488942fdaf4": {
|
||
"model_module": "@jupyter-widgets/controls",
|
||
"model_module_version": "1.5.0",
|
||
"model_name": "HTMLModel",
|
||
"state": {
|
||
"_dom_classes": [],
|
||
"_model_module": "@jupyter-widgets/controls",
|
||
"_model_module_version": "1.5.0",
|
||
"_model_name": "HTMLModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/controls",
|
||
"_view_module_version": "1.5.0",
|
||
"_view_name": "HTMLView",
|
||
"description": "",
|
||
"description_tooltip": null,
|
||
"layout": "IPY_MODEL_25529e7fd57049d2816d31f696eab1fd",
|
||
"placeholder": "",
|
||
"style": "IPY_MODEL_093bdcb608cf4b4fa37b0032a3915187",
|
||
"value": " 36.0k/36.0k [00:00<00:00, 1.29MB/s]"
|
||
}
|
||
},
|
||
"75f06408071c494f934bb909b84110d1": {
|
||
"model_module": "@jupyter-widgets/base",
|
||
"model_module_version": "1.2.0",
|
||
"model_name": "LayoutModel",
|
||
"state": {
|
||
"_model_module": "@jupyter-widgets/base",
|
||
"_model_module_version": "1.2.0",
|
||
"_model_name": "LayoutModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/base",
|
||
"_view_module_version": "1.2.0",
|
||
"_view_name": "LayoutView",
|
||
"align_content": null,
|
||
"align_items": null,
|
||
"align_self": null,
|
||
"border": null,
|
||
"bottom": null,
|
||
"display": null,
|
||
"flex": null,
|
||
"flex_flow": null,
|
||
"grid_area": null,
|
||
"grid_auto_columns": null,
|
||
"grid_auto_flow": null,
|
||
"grid_auto_rows": null,
|
||
"grid_column": null,
|
||
"grid_gap": null,
|
||
"grid_row": null,
|
||
"grid_template_areas": null,
|
||
"grid_template_columns": null,
|
||
"grid_template_rows": null,
|
||
"height": null,
|
||
"justify_content": null,
|
||
"justify_items": null,
|
||
"left": null,
|
||
"margin": null,
|
||
"max_height": null,
|
||
"max_width": null,
|
||
"min_height": null,
|
||
"min_width": null,
|
||
"object_fit": null,
|
||
"object_position": null,
|
||
"order": null,
|
||
"overflow": null,
|
||
"overflow_x": null,
|
||
"overflow_y": null,
|
||
"padding": null,
|
||
"right": null,
|
||
"top": null,
|
||
"visibility": null,
|
||
"width": null
|
||
}
|
||
},
|
||
"78632694ff694442bc3fefc2cac2cbf5": {
|
||
"model_module": "@jupyter-widgets/controls",
|
||
"model_module_version": "1.5.0",
|
||
"model_name": "HTMLModel",
|
||
"state": {
|
||
"_dom_classes": [],
|
||
"_model_module": "@jupyter-widgets/controls",
|
||
"_model_module_version": "1.5.0",
|
||
"_model_name": "HTMLModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/controls",
|
||
"_view_module_version": "1.5.0",
|
||
"_view_name": "HTMLView",
|
||
"description": "",
|
||
"description_tooltip": null,
|
||
"layout": "IPY_MODEL_0218397c573e4b28bfb4ffa66464d50f",
|
||
"placeholder": "",
|
||
"style": "IPY_MODEL_9b01bcd6e5174be2af19f457047017c8",
|
||
"value": " 165M/165M [00:03<00:00, 42.9MB/s]"
|
||
}
|
||
},
|
||
"78a2d2d4ee3f42f3be42ef4baa298561": {
|
||
"model_module": "@jupyter-widgets/controls",
|
||
"model_module_version": "1.5.0",
|
||
"model_name": "HTMLModel",
|
||
"state": {
|
||
"_dom_classes": [],
|
||
"_model_module": "@jupyter-widgets/controls",
|
||
"_model_module_version": "1.5.0",
|
||
"_model_name": "HTMLModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/controls",
|
||
"_view_module_version": "1.5.0",
|
||
"_view_name": "HTMLView",
|
||
"description": "",
|
||
"description_tooltip": null,
|
||
"layout": "IPY_MODEL_cab80632b7564a9eb59583e09573c1ee",
|
||
"placeholder": "",
|
||
"style": "IPY_MODEL_10c0d50d7c204de0b4c8e8f4d3ec0af5",
|
||
"value": "README.md: 100%"
|
||
}
|
||
},
|
||
"78d0e2aa93674bbeb42bff87a23cce9b": {
|
||
"model_module": "@jupyter-widgets/base",
|
||
"model_module_version": "1.2.0",
|
||
"model_name": "LayoutModel",
|
||
"state": {
|
||
"_model_module": "@jupyter-widgets/base",
|
||
"_model_module_version": "1.2.0",
|
||
"_model_name": "LayoutModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/base",
|
||
"_view_module_version": "1.2.0",
|
||
"_view_name": "LayoutView",
|
||
"align_content": null,
|
||
"align_items": null,
|
||
"align_self": null,
|
||
"border": null,
|
||
"bottom": null,
|
||
"display": null,
|
||
"flex": null,
|
||
"flex_flow": null,
|
||
"grid_area": null,
|
||
"grid_auto_columns": null,
|
||
"grid_auto_flow": null,
|
||
"grid_auto_rows": null,
|
||
"grid_column": null,
|
||
"grid_gap": null,
|
||
"grid_row": null,
|
||
"grid_template_areas": null,
|
||
"grid_template_columns": null,
|
||
"grid_template_rows": null,
|
||
"height": null,
|
||
"justify_content": null,
|
||
"justify_items": null,
|
||
"left": null,
|
||
"margin": null,
|
||
"max_height": null,
|
||
"max_width": null,
|
||
"min_height": null,
|
||
"min_width": null,
|
||
"object_fit": null,
|
||
"object_position": null,
|
||
"order": null,
|
||
"overflow": null,
|
||
"overflow_x": null,
|
||
"overflow_y": null,
|
||
"padding": null,
|
||
"right": null,
|
||
"top": null,
|
||
"visibility": null,
|
||
"width": null
|
||
}
|
||
},
|
||
"7b98103300814f3caea84266263b95a2": {
|
||
"model_module": "@jupyter-widgets/controls",
|
||
"model_module_version": "1.5.0",
|
||
"model_name": "HTMLModel",
|
||
"state": {
|
||
"_dom_classes": [],
|
||
"_model_module": "@jupyter-widgets/controls",
|
||
"_model_module_version": "1.5.0",
|
||
"_model_name": "HTMLModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/controls",
|
||
"_view_module_version": "1.5.0",
|
||
"_view_name": "HTMLView",
|
||
"description": "",
|
||
"description_tooltip": null,
|
||
"layout": "IPY_MODEL_b8c0c8aaac0d4032bf5c673a43d084ab",
|
||
"placeholder": "",
|
||
"style": "IPY_MODEL_d1f32499fa3f4795b92361637e23a9bb",
|
||
"value": " 454M/454M [00:11<00:00, 40.4MB/s]"
|
||
}
|
||
},
|
||
"7c4d1de626784a59a7e0a33c24086186": {
|
||
"model_module": "@jupyter-widgets/base",
|
||
"model_module_version": "1.2.0",
|
||
"model_name": "LayoutModel",
|
||
"state": {
|
||
"_model_module": "@jupyter-widgets/base",
|
||
"_model_module_version": "1.2.0",
|
||
"_model_name": "LayoutModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/base",
|
||
"_view_module_version": "1.2.0",
|
||
"_view_name": "LayoutView",
|
||
"align_content": null,
|
||
"align_items": null,
|
||
"align_self": null,
|
||
"border": null,
|
||
"bottom": null,
|
||
"display": null,
|
||
"flex": null,
|
||
"flex_flow": null,
|
||
"grid_area": null,
|
||
"grid_auto_columns": null,
|
||
"grid_auto_flow": null,
|
||
"grid_auto_rows": null,
|
||
"grid_column": null,
|
||
"grid_gap": null,
|
||
"grid_row": null,
|
||
"grid_template_areas": null,
|
||
"grid_template_columns": null,
|
||
"grid_template_rows": null,
|
||
"height": null,
|
||
"justify_content": null,
|
||
"justify_items": null,
|
||
"left": null,
|
||
"margin": null,
|
||
"max_height": null,
|
||
"max_width": null,
|
||
"min_height": null,
|
||
"min_width": null,
|
||
"object_fit": null,
|
||
"object_position": null,
|
||
"order": null,
|
||
"overflow": null,
|
||
"overflow_x": null,
|
||
"overflow_y": null,
|
||
"padding": null,
|
||
"right": null,
|
||
"top": null,
|
||
"visibility": null,
|
||
"width": null
|
||
}
|
||
},
|
||
"82991dcc80f14af9bd2e95f705980676": {
|
||
"model_module": "@jupyter-widgets/controls",
|
||
"model_module_version": "1.5.0",
|
||
"model_name": "HTMLModel",
|
||
"state": {
|
||
"_dom_classes": [],
|
||
"_model_module": "@jupyter-widgets/controls",
|
||
"_model_module_version": "1.5.0",
|
||
"_model_name": "HTMLModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/controls",
|
||
"_view_module_version": "1.5.0",
|
||
"_view_name": "HTMLView",
|
||
"description": "",
|
||
"description_tooltip": null,
|
||
"layout": "IPY_MODEL_e17d286a965a49cfb8d5bf885865cb1e",
|
||
"placeholder": "",
|
||
"style": "IPY_MODEL_ca015c1a0c1449e68edb282462435a3f",
|
||
"value": "test-00002-of-00003.parquet: 100%"
|
||
}
|
||
},
|
||
"84570fe2c2a54a068fb9b8cbc8b041a1": {
|
||
"model_module": "@jupyter-widgets/base",
|
||
"model_module_version": "1.2.0",
|
||
"model_name": "LayoutModel",
|
||
"state": {
|
||
"_model_module": "@jupyter-widgets/base",
|
||
"_model_module_version": "1.2.0",
|
||
"_model_name": "LayoutModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/base",
|
||
"_view_module_version": "1.2.0",
|
||
"_view_name": "LayoutView",
|
||
"align_content": null,
|
||
"align_items": null,
|
||
"align_self": null,
|
||
"border": null,
|
||
"bottom": null,
|
||
"display": null,
|
||
"flex": null,
|
||
"flex_flow": null,
|
||
"grid_area": null,
|
||
"grid_auto_columns": null,
|
||
"grid_auto_flow": null,
|
||
"grid_auto_rows": null,
|
||
"grid_column": null,
|
||
"grid_gap": null,
|
||
"grid_row": null,
|
||
"grid_template_areas": null,
|
||
"grid_template_columns": null,
|
||
"grid_template_rows": null,
|
||
"height": null,
|
||
"justify_content": null,
|
||
"justify_items": null,
|
||
"left": null,
|
||
"margin": null,
|
||
"max_height": null,
|
||
"max_width": null,
|
||
"min_height": null,
|
||
"min_width": null,
|
||
"object_fit": null,
|
||
"object_position": null,
|
||
"order": null,
|
||
"overflow": null,
|
||
"overflow_x": null,
|
||
"overflow_y": null,
|
||
"padding": null,
|
||
"right": null,
|
||
"top": null,
|
||
"visibility": null,
|
||
"width": null
|
||
}
|
||
},
|
||
"8e9358ec7d474808bb96c13e13489c67": {
|
||
"model_module": "@jupyter-widgets/controls",
|
||
"model_module_version": "1.5.0",
|
||
"model_name": "HTMLModel",
|
||
"state": {
|
||
"_dom_classes": [],
|
||
"_model_module": "@jupyter-widgets/controls",
|
||
"_model_module_version": "1.5.0",
|
||
"_model_name": "HTMLModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/controls",
|
||
"_view_module_version": "1.5.0",
|
||
"_view_name": "HTMLView",
|
||
"description": "",
|
||
"description_tooltip": null,
|
||
"layout": "IPY_MODEL_3b70fa4e43ef4951862e119378c3c501",
|
||
"placeholder": "",
|
||
"style": "IPY_MODEL_6c0a6a7fa8ca4e1c961a36305f0e7638",
|
||
"value": "Generating dev split: 100%"
|
||
}
|
||
},
|
||
"93ee645d54f34acdb0d15092d4a6f0d1": {
|
||
"model_module": "@jupyter-widgets/controls",
|
||
"model_module_version": "1.5.0",
|
||
"model_name": "HTMLModel",
|
||
"state": {
|
||
"_dom_classes": [],
|
||
"_model_module": "@jupyter-widgets/controls",
|
||
"_model_module_version": "1.5.0",
|
||
"_model_name": "HTMLModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/controls",
|
||
"_view_module_version": "1.5.0",
|
||
"_view_name": "HTMLView",
|
||
"description": "",
|
||
"description_tooltip": null,
|
||
"layout": "IPY_MODEL_4ff3a6aaf706460bbba01b248b93000e",
|
||
"placeholder": "",
|
||
"style": "IPY_MODEL_bfd75a39f0154c30adbaad1e2ca0f1e2",
|
||
"value": " 471M/471M [00:11<00:00, 41.5MB/s]"
|
||
}
|
||
},
|
||
"9437b707bf1a4847a50aafeb4252dab5": {
|
||
"model_module": "@jupyter-widgets/controls",
|
||
"model_module_version": "1.5.0",
|
||
"model_name": "HTMLModel",
|
||
"state": {
|
||
"_dom_classes": [],
|
||
"_model_module": "@jupyter-widgets/controls",
|
||
"_model_module_version": "1.5.0",
|
||
"_model_name": "HTMLModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/controls",
|
||
"_view_module_version": "1.5.0",
|
||
"_view_name": "HTMLView",
|
||
"description": "",
|
||
"description_tooltip": null,
|
||
"layout": "IPY_MODEL_d2029292327b488db02fd123ee2b75af",
|
||
"placeholder": "",
|
||
"style": "IPY_MODEL_3e26bc24a3e44b4582f57913bdf98de4",
|
||
"value": " 5/5 [00:00<00:00, 8.03 examples/s]"
|
||
}
|
||
},
|
||
"963cf422ca894d82b0dd94c6165d41bf": {
|
||
"model_module": "@jupyter-widgets/controls",
|
||
"model_module_version": "1.5.0",
|
||
"model_name": "HTMLModel",
|
||
"state": {
|
||
"_dom_classes": [],
|
||
"_model_module": "@jupyter-widgets/controls",
|
||
"_model_module_version": "1.5.0",
|
||
"_model_name": "HTMLModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/controls",
|
||
"_view_module_version": "1.5.0",
|
||
"_view_name": "HTMLView",
|
||
"description": "",
|
||
"description_tooltip": null,
|
||
"layout": "IPY_MODEL_f5b34a743ce54fb591f25b04a2651d65",
|
||
"placeholder": "",
|
||
"style": "IPY_MODEL_dec6399e2c5341aead66e1674d3e6c72",
|
||
"value": " 30/30 [00:03<00:00, 8.23 examples/s]"
|
||
}
|
||
},
|
||
"9659140487ca4d3ea799196d2c1ecf61": {
|
||
"model_module": "@jupyter-widgets/controls",
|
||
"model_module_version": "1.5.0",
|
||
"model_name": "HBoxModel",
|
||
"state": {
|
||
"_dom_classes": [],
|
||
"_model_module": "@jupyter-widgets/controls",
|
||
"_model_module_version": "1.5.0",
|
||
"_model_name": "HBoxModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/controls",
|
||
"_view_module_version": "1.5.0",
|
||
"_view_name": "HBoxView",
|
||
"box_style": "",
|
||
"children": [
|
||
"IPY_MODEL_52150fd494d24eea89b5232077509355",
|
||
"IPY_MODEL_04acde771d0a46699e1de07d9733d1a3",
|
||
"IPY_MODEL_7b98103300814f3caea84266263b95a2"
|
||
],
|
||
"layout": "IPY_MODEL_75f06408071c494f934bb909b84110d1"
|
||
}
|
||
},
|
||
"9785009392934e3bbb229e8781667cbc": {
|
||
"model_module": "@jupyter-widgets/controls",
|
||
"model_module_version": "1.5.0",
|
||
"model_name": "HTMLModel",
|
||
"state": {
|
||
"_dom_classes": [],
|
||
"_model_module": "@jupyter-widgets/controls",
|
||
"_model_module_version": "1.5.0",
|
||
"_model_name": "HTMLModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/controls",
|
||
"_view_module_version": "1.5.0",
|
||
"_view_name": "HTMLView",
|
||
"description": "",
|
||
"description_tooltip": null,
|
||
"layout": "IPY_MODEL_fa4800a506ac480984d58933580df086",
|
||
"placeholder": "",
|
||
"style": "IPY_MODEL_117468099dbc42fdaafc08207eaac7ab",
|
||
"value": " 29.5M/29.5M [00:00<00:00, 36.5MB/s]"
|
||
}
|
||
},
|
||
"98c5ce434cff454eaaa3f0fd3498183a": {
|
||
"model_module": "@jupyter-widgets/controls",
|
||
"model_module_version": "1.5.0",
|
||
"model_name": "DescriptionStyleModel",
|
||
"state": {
|
||
"_model_module": "@jupyter-widgets/controls",
|
||
"_model_module_version": "1.5.0",
|
||
"_model_name": "DescriptionStyleModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/base",
|
||
"_view_module_version": "1.2.0",
|
||
"_view_name": "StyleView",
|
||
"description_width": ""
|
||
}
|
||
},
|
||
"9b01bcd6e5174be2af19f457047017c8": {
|
||
"model_module": "@jupyter-widgets/controls",
|
||
"model_module_version": "1.5.0",
|
||
"model_name": "DescriptionStyleModel",
|
||
"state": {
|
||
"_model_module": "@jupyter-widgets/controls",
|
||
"_model_module_version": "1.5.0",
|
||
"_model_name": "DescriptionStyleModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/base",
|
||
"_view_module_version": "1.2.0",
|
||
"_view_name": "StyleView",
|
||
"description_width": ""
|
||
}
|
||
},
|
||
"9d2b6eabf7e14436b72bbf374b4a2a0a": {
|
||
"model_module": "@jupyter-widgets/controls",
|
||
"model_module_version": "1.5.0",
|
||
"model_name": "HBoxModel",
|
||
"state": {
|
||
"_dom_classes": [],
|
||
"_model_module": "@jupyter-widgets/controls",
|
||
"_model_module_version": "1.5.0",
|
||
"_model_name": "HBoxModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/controls",
|
||
"_view_module_version": "1.5.0",
|
||
"_view_name": "HBoxView",
|
||
"box_style": "",
|
||
"children": [
|
||
"IPY_MODEL_b5d7cb5a6157449a850ef0e12e3d3eb7",
|
||
"IPY_MODEL_c245d316bf9e44dabe5bfd1e47fc8d2e",
|
||
"IPY_MODEL_963cf422ca894d82b0dd94c6165d41bf"
|
||
],
|
||
"layout": "IPY_MODEL_78d0e2aa93674bbeb42bff87a23cce9b"
|
||
}
|
||
},
|
||
"ad1fb86cc1f94fd9911eda03cf4a3783": {
|
||
"model_module": "@jupyter-widgets/base",
|
||
"model_module_version": "1.2.0",
|
||
"model_name": "LayoutModel",
|
||
"state": {
|
||
"_model_module": "@jupyter-widgets/base",
|
||
"_model_module_version": "1.2.0",
|
||
"_model_name": "LayoutModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/base",
|
||
"_view_module_version": "1.2.0",
|
||
"_view_name": "LayoutView",
|
||
"align_content": null,
|
||
"align_items": null,
|
||
"align_self": null,
|
||
"border": null,
|
||
"bottom": null,
|
||
"display": null,
|
||
"flex": null,
|
||
"flex_flow": null,
|
||
"grid_area": null,
|
||
"grid_auto_columns": null,
|
||
"grid_auto_flow": null,
|
||
"grid_auto_rows": null,
|
||
"grid_column": null,
|
||
"grid_gap": null,
|
||
"grid_row": null,
|
||
"grid_template_areas": null,
|
||
"grid_template_columns": null,
|
||
"grid_template_rows": null,
|
||
"height": null,
|
||
"justify_content": null,
|
||
"justify_items": null,
|
||
"left": null,
|
||
"margin": null,
|
||
"max_height": null,
|
||
"max_width": null,
|
||
"min_height": null,
|
||
"min_width": null,
|
||
"object_fit": null,
|
||
"object_position": null,
|
||
"order": null,
|
||
"overflow": null,
|
||
"overflow_x": null,
|
||
"overflow_y": null,
|
||
"padding": null,
|
||
"right": null,
|
||
"top": null,
|
||
"visibility": null,
|
||
"width": null
|
||
}
|
||
},
|
||
"aef4172d916f40b0ab4ed09104e10f24": {
|
||
"model_module": "@jupyter-widgets/controls",
|
||
"model_module_version": "1.5.0",
|
||
"model_name": "ProgressStyleModel",
|
||
"state": {
|
||
"_model_module": "@jupyter-widgets/controls",
|
||
"_model_module_version": "1.5.0",
|
||
"_model_name": "ProgressStyleModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/base",
|
||
"_view_module_version": "1.2.0",
|
||
"_view_name": "StyleView",
|
||
"bar_color": null,
|
||
"description_width": ""
|
||
}
|
||
},
|
||
"b09b2690894749339a9172e5ad0a9b75": {
|
||
"model_module": "@jupyter-widgets/base",
|
||
"model_module_version": "1.2.0",
|
||
"model_name": "LayoutModel",
|
||
"state": {
|
||
"_model_module": "@jupyter-widgets/base",
|
||
"_model_module_version": "1.2.0",
|
||
"_model_name": "LayoutModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/base",
|
||
"_view_module_version": "1.2.0",
|
||
"_view_name": "LayoutView",
|
||
"align_content": null,
|
||
"align_items": null,
|
||
"align_self": null,
|
||
"border": null,
|
||
"bottom": null,
|
||
"display": null,
|
||
"flex": null,
|
||
"flex_flow": null,
|
||
"grid_area": null,
|
||
"grid_auto_columns": null,
|
||
"grid_auto_flow": null,
|
||
"grid_auto_rows": null,
|
||
"grid_column": null,
|
||
"grid_gap": null,
|
||
"grid_row": null,
|
||
"grid_template_areas": null,
|
||
"grid_template_columns": null,
|
||
"grid_template_rows": null,
|
||
"height": null,
|
||
"justify_content": null,
|
||
"justify_items": null,
|
||
"left": null,
|
||
"margin": null,
|
||
"max_height": null,
|
||
"max_width": null,
|
||
"min_height": null,
|
||
"min_width": null,
|
||
"object_fit": null,
|
||
"object_position": null,
|
||
"order": null,
|
||
"overflow": null,
|
||
"overflow_x": null,
|
||
"overflow_y": null,
|
||
"padding": null,
|
||
"right": null,
|
||
"top": null,
|
||
"visibility": null,
|
||
"width": null
|
||
}
|
||
},
|
||
"b5d7cb5a6157449a850ef0e12e3d3eb7": {
|
||
"model_module": "@jupyter-widgets/controls",
|
||
"model_module_version": "1.5.0",
|
||
"model_name": "HTMLModel",
|
||
"state": {
|
||
"_dom_classes": [],
|
||
"_model_module": "@jupyter-widgets/controls",
|
||
"_model_module_version": "1.5.0",
|
||
"_model_name": "HTMLModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/controls",
|
||
"_view_module_version": "1.5.0",
|
||
"_view_name": "HTMLView",
|
||
"description": "",
|
||
"description_tooltip": null,
|
||
"layout": "IPY_MODEL_12c6f1180eeb4e9eb9037ea5dd24ec8e",
|
||
"placeholder": "",
|
||
"style": "IPY_MODEL_017a81d7160240a398947545963856f5",
|
||
"value": "Generating validation split: 100%"
|
||
}
|
||
},
|
||
"b77fe05bbcf84cdc8ef85b264ccd35f6": {
|
||
"model_module": "@jupyter-widgets/base",
|
||
"model_module_version": "1.2.0",
|
||
"model_name": "LayoutModel",
|
||
"state": {
|
||
"_model_module": "@jupyter-widgets/base",
|
||
"_model_module_version": "1.2.0",
|
||
"_model_name": "LayoutModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/base",
|
||
"_view_module_version": "1.2.0",
|
||
"_view_name": "LayoutView",
|
||
"align_content": null,
|
||
"align_items": null,
|
||
"align_self": null,
|
||
"border": null,
|
||
"bottom": null,
|
||
"display": null,
|
||
"flex": null,
|
||
"flex_flow": null,
|
||
"grid_area": null,
|
||
"grid_auto_columns": null,
|
||
"grid_auto_flow": null,
|
||
"grid_auto_rows": null,
|
||
"grid_column": null,
|
||
"grid_gap": null,
|
||
"grid_row": null,
|
||
"grid_template_areas": null,
|
||
"grid_template_columns": null,
|
||
"grid_template_rows": null,
|
||
"height": null,
|
||
"justify_content": null,
|
||
"justify_items": null,
|
||
"left": null,
|
||
"margin": null,
|
||
"max_height": null,
|
||
"max_width": null,
|
||
"min_height": null,
|
||
"min_width": null,
|
||
"object_fit": null,
|
||
"object_position": null,
|
||
"order": null,
|
||
"overflow": null,
|
||
"overflow_x": null,
|
||
"overflow_y": null,
|
||
"padding": null,
|
||
"right": null,
|
||
"top": null,
|
||
"visibility": null,
|
||
"width": null
|
||
}
|
||
},
|
||
"b8c0c8aaac0d4032bf5c673a43d084ab": {
|
||
"model_module": "@jupyter-widgets/base",
|
||
"model_module_version": "1.2.0",
|
||
"model_name": "LayoutModel",
|
||
"state": {
|
||
"_model_module": "@jupyter-widgets/base",
|
||
"_model_module_version": "1.2.0",
|
||
"_model_name": "LayoutModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/base",
|
||
"_view_module_version": "1.2.0",
|
||
"_view_name": "LayoutView",
|
||
"align_content": null,
|
||
"align_items": null,
|
||
"align_self": null,
|
||
"border": null,
|
||
"bottom": null,
|
||
"display": null,
|
||
"flex": null,
|
||
"flex_flow": null,
|
||
"grid_area": null,
|
||
"grid_auto_columns": null,
|
||
"grid_auto_flow": null,
|
||
"grid_auto_rows": null,
|
||
"grid_column": null,
|
||
"grid_gap": null,
|
||
"grid_row": null,
|
||
"grid_template_areas": null,
|
||
"grid_template_columns": null,
|
||
"grid_template_rows": null,
|
||
"height": null,
|
||
"justify_content": null,
|
||
"justify_items": null,
|
||
"left": null,
|
||
"margin": null,
|
||
"max_height": null,
|
||
"max_width": null,
|
||
"min_height": null,
|
||
"min_width": null,
|
||
"object_fit": null,
|
||
"object_position": null,
|
||
"order": null,
|
||
"overflow": null,
|
||
"overflow_x": null,
|
||
"overflow_y": null,
|
||
"padding": null,
|
||
"right": null,
|
||
"top": null,
|
||
"visibility": null,
|
||
"width": null
|
||
}
|
||
},
|
||
"b90d660ca8584ba1815a3c66b420c079": {
|
||
"model_module": "@jupyter-widgets/controls",
|
||
"model_module_version": "1.5.0",
|
||
"model_name": "ProgressStyleModel",
|
||
"state": {
|
||
"_model_module": "@jupyter-widgets/controls",
|
||
"_model_module_version": "1.5.0",
|
||
"_model_name": "ProgressStyleModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/base",
|
||
"_view_module_version": "1.2.0",
|
||
"_view_name": "StyleView",
|
||
"bar_color": null,
|
||
"description_width": ""
|
||
}
|
||
},
|
||
"ba5e6ca09f174ef3a348453cf5cfc24a": {
|
||
"model_module": "@jupyter-widgets/controls",
|
||
"model_module_version": "1.5.0",
|
||
"model_name": "FloatProgressModel",
|
||
"state": {
|
||
"_dom_classes": [],
|
||
"_model_module": "@jupyter-widgets/controls",
|
||
"_model_module_version": "1.5.0",
|
||
"_model_name": "FloatProgressModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/controls",
|
||
"_view_module_version": "1.5.0",
|
||
"_view_name": "ProgressView",
|
||
"bar_style": "success",
|
||
"description": "",
|
||
"description_tooltip": null,
|
||
"layout": "IPY_MODEL_626ef2f811ae4e119a0e85cebe92b91d",
|
||
"max": 36030,
|
||
"min": 0,
|
||
"orientation": "horizontal",
|
||
"style": "IPY_MODEL_aef4172d916f40b0ab4ed09104e10f24",
|
||
"value": 36030
|
||
}
|
||
},
|
||
"bfd75a39f0154c30adbaad1e2ca0f1e2": {
|
||
"model_module": "@jupyter-widgets/controls",
|
||
"model_module_version": "1.5.0",
|
||
"model_name": "DescriptionStyleModel",
|
||
"state": {
|
||
"_model_module": "@jupyter-widgets/controls",
|
||
"_model_module_version": "1.5.0",
|
||
"_model_name": "DescriptionStyleModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/base",
|
||
"_view_module_version": "1.2.0",
|
||
"_view_name": "StyleView",
|
||
"description_width": ""
|
||
}
|
||
},
|
||
"c06f9a090fb54c74b947634bf6d11fa8": {
|
||
"model_module": "@jupyter-widgets/controls",
|
||
"model_module_version": "1.5.0",
|
||
"model_name": "HBoxModel",
|
||
"state": {
|
||
"_dom_classes": [],
|
||
"_model_module": "@jupyter-widgets/controls",
|
||
"_model_module_version": "1.5.0",
|
||
"_model_name": "HBoxModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/controls",
|
||
"_view_module_version": "1.5.0",
|
||
"_view_name": "HBoxView",
|
||
"box_style": "",
|
||
"children": [
|
||
"IPY_MODEL_82991dcc80f14af9bd2e95f705980676",
|
||
"IPY_MODEL_cd832e3842b945aabbb327856053f261",
|
||
"IPY_MODEL_93ee645d54f34acdb0d15092d4a6f0d1"
|
||
],
|
||
"layout": "IPY_MODEL_b77fe05bbcf84cdc8ef85b264ccd35f6"
|
||
}
|
||
},
|
||
"c245d316bf9e44dabe5bfd1e47fc8d2e": {
|
||
"model_module": "@jupyter-widgets/controls",
|
||
"model_module_version": "1.5.0",
|
||
"model_name": "FloatProgressModel",
|
||
"state": {
|
||
"_dom_classes": [],
|
||
"_model_module": "@jupyter-widgets/controls",
|
||
"_model_module_version": "1.5.0",
|
||
"_model_name": "FloatProgressModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/controls",
|
||
"_view_module_version": "1.5.0",
|
||
"_view_name": "ProgressView",
|
||
"bar_style": "success",
|
||
"description": "",
|
||
"description_tooltip": null,
|
||
"layout": "IPY_MODEL_1cf8eeb8d81c4e8a8e95dd43296a78b9",
|
||
"max": 30,
|
||
"min": 0,
|
||
"orientation": "horizontal",
|
||
"style": "IPY_MODEL_5b0b5a3f79e94c51aae48fe0dd34ba0e",
|
||
"value": 30
|
||
}
|
||
},
|
||
"c452ccbf47a44073aee710175f707a7d": {
|
||
"model_module": "@jupyter-widgets/controls",
|
||
"model_module_version": "1.5.0",
|
||
"model_name": "ProgressStyleModel",
|
||
"state": {
|
||
"_model_module": "@jupyter-widgets/controls",
|
||
"_model_module_version": "1.5.0",
|
||
"_model_name": "ProgressStyleModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/base",
|
||
"_view_module_version": "1.2.0",
|
||
"_view_name": "StyleView",
|
||
"bar_color": null,
|
||
"description_width": ""
|
||
}
|
||
},
|
||
"c788d4e9e1e24dca9b6503689df9b631": {
|
||
"model_module": "@jupyter-widgets/controls",
|
||
"model_module_version": "1.5.0",
|
||
"model_name": "HBoxModel",
|
||
"state": {
|
||
"_dom_classes": [],
|
||
"_model_module": "@jupyter-widgets/controls",
|
||
"_model_module_version": "1.5.0",
|
||
"_model_name": "HBoxModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/controls",
|
||
"_view_module_version": "1.5.0",
|
||
"_view_name": "HBoxView",
|
||
"box_style": "",
|
||
"children": [
|
||
"IPY_MODEL_d1587e2144bf46299c1bdec3ea96e4e7",
|
||
"IPY_MODEL_500a072c09da41759cb2c942a16d8429",
|
||
"IPY_MODEL_9785009392934e3bbb229e8781667cbc"
|
||
],
|
||
"layout": "IPY_MODEL_84570fe2c2a54a068fb9b8cbc8b041a1"
|
||
}
|
||
},
|
||
"ca015c1a0c1449e68edb282462435a3f": {
|
||
"model_module": "@jupyter-widgets/controls",
|
||
"model_module_version": "1.5.0",
|
||
"model_name": "DescriptionStyleModel",
|
||
"state": {
|
||
"_model_module": "@jupyter-widgets/controls",
|
||
"_model_module_version": "1.5.0",
|
||
"_model_name": "DescriptionStyleModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/base",
|
||
"_view_module_version": "1.2.0",
|
||
"_view_name": "StyleView",
|
||
"description_width": ""
|
||
}
|
||
},
|
||
"cab80632b7564a9eb59583e09573c1ee": {
|
||
"model_module": "@jupyter-widgets/base",
|
||
"model_module_version": "1.2.0",
|
||
"model_name": "LayoutModel",
|
||
"state": {
|
||
"_model_module": "@jupyter-widgets/base",
|
||
"_model_module_version": "1.2.0",
|
||
"_model_name": "LayoutModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/base",
|
||
"_view_module_version": "1.2.0",
|
||
"_view_name": "LayoutView",
|
||
"align_content": null,
|
||
"align_items": null,
|
||
"align_self": null,
|
||
"border": null,
|
||
"bottom": null,
|
||
"display": null,
|
||
"flex": null,
|
||
"flex_flow": null,
|
||
"grid_area": null,
|
||
"grid_auto_columns": null,
|
||
"grid_auto_flow": null,
|
||
"grid_auto_rows": null,
|
||
"grid_column": null,
|
||
"grid_gap": null,
|
||
"grid_row": null,
|
||
"grid_template_areas": null,
|
||
"grid_template_columns": null,
|
||
"grid_template_rows": null,
|
||
"height": null,
|
||
"justify_content": null,
|
||
"justify_items": null,
|
||
"left": null,
|
||
"margin": null,
|
||
"max_height": null,
|
||
"max_width": null,
|
||
"min_height": null,
|
||
"min_width": null,
|
||
"object_fit": null,
|
||
"object_position": null,
|
||
"order": null,
|
||
"overflow": null,
|
||
"overflow_x": null,
|
||
"overflow_y": null,
|
||
"padding": null,
|
||
"right": null,
|
||
"top": null,
|
||
"visibility": null,
|
||
"width": null
|
||
}
|
||
},
|
||
"cbed38801163438d891879b756f5baab": {
|
||
"model_module": "@jupyter-widgets/controls",
|
||
"model_module_version": "1.5.0",
|
||
"model_name": "DescriptionStyleModel",
|
||
"state": {
|
||
"_model_module": "@jupyter-widgets/controls",
|
||
"_model_module_version": "1.5.0",
|
||
"_model_name": "DescriptionStyleModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/base",
|
||
"_view_module_version": "1.2.0",
|
||
"_view_name": "StyleView",
|
||
"description_width": ""
|
||
}
|
||
},
|
||
"cd832e3842b945aabbb327856053f261": {
|
||
"model_module": "@jupyter-widgets/controls",
|
||
"model_module_version": "1.5.0",
|
||
"model_name": "FloatProgressModel",
|
||
"state": {
|
||
"_dom_classes": [],
|
||
"_model_module": "@jupyter-widgets/controls",
|
||
"_model_module_version": "1.5.0",
|
||
"_model_name": "FloatProgressModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/controls",
|
||
"_view_module_version": "1.5.0",
|
||
"_view_name": "ProgressView",
|
||
"bar_style": "success",
|
||
"description": "",
|
||
"description_tooltip": null,
|
||
"layout": "IPY_MODEL_2932b06afde9468a976eb6bfb072b80e",
|
||
"max": 470745176,
|
||
"min": 0,
|
||
"orientation": "horizontal",
|
||
"style": "IPY_MODEL_d027c807ddc04f89bec41dc05fde7718",
|
||
"value": 470745176
|
||
}
|
||
},
|
||
"ce5019b36cde44c58c5f596dbb59a2f8": {
|
||
"model_module": "@jupyter-widgets/base",
|
||
"model_module_version": "1.2.0",
|
||
"model_name": "LayoutModel",
|
||
"state": {
|
||
"_model_module": "@jupyter-widgets/base",
|
||
"_model_module_version": "1.2.0",
|
||
"_model_name": "LayoutModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/base",
|
||
"_view_module_version": "1.2.0",
|
||
"_view_name": "LayoutView",
|
||
"align_content": null,
|
||
"align_items": null,
|
||
"align_self": null,
|
||
"border": null,
|
||
"bottom": null,
|
||
"display": null,
|
||
"flex": null,
|
||
"flex_flow": null,
|
||
"grid_area": null,
|
||
"grid_auto_columns": null,
|
||
"grid_auto_flow": null,
|
||
"grid_auto_rows": null,
|
||
"grid_column": null,
|
||
"grid_gap": null,
|
||
"grid_row": null,
|
||
"grid_template_areas": null,
|
||
"grid_template_columns": null,
|
||
"grid_template_rows": null,
|
||
"height": null,
|
||
"justify_content": null,
|
||
"justify_items": null,
|
||
"left": null,
|
||
"margin": null,
|
||
"max_height": null,
|
||
"max_width": null,
|
||
"min_height": null,
|
||
"min_width": null,
|
||
"object_fit": null,
|
||
"object_position": null,
|
||
"order": null,
|
||
"overflow": null,
|
||
"overflow_x": null,
|
||
"overflow_y": null,
|
||
"padding": null,
|
||
"right": null,
|
||
"top": null,
|
||
"visibility": null,
|
||
"width": null
|
||
}
|
||
},
|
||
"d027c807ddc04f89bec41dc05fde7718": {
|
||
"model_module": "@jupyter-widgets/controls",
|
||
"model_module_version": "1.5.0",
|
||
"model_name": "ProgressStyleModel",
|
||
"state": {
|
||
"_model_module": "@jupyter-widgets/controls",
|
||
"_model_module_version": "1.5.0",
|
||
"_model_name": "ProgressStyleModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/base",
|
||
"_view_module_version": "1.2.0",
|
||
"_view_name": "StyleView",
|
||
"bar_color": null,
|
||
"description_width": ""
|
||
}
|
||
},
|
||
"d1587e2144bf46299c1bdec3ea96e4e7": {
|
||
"model_module": "@jupyter-widgets/controls",
|
||
"model_module_version": "1.5.0",
|
||
"model_name": "HTMLModel",
|
||
"state": {
|
||
"_dom_classes": [],
|
||
"_model_module": "@jupyter-widgets/controls",
|
||
"_model_module_version": "1.5.0",
|
||
"_model_name": "HTMLModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/controls",
|
||
"_view_module_version": "1.5.0",
|
||
"_view_name": "HTMLView",
|
||
"description": "",
|
||
"description_tooltip": null,
|
||
"layout": "IPY_MODEL_f9e579c58e3f4ae0bbb721dffa33bf0a",
|
||
"placeholder": "",
|
||
"style": "IPY_MODEL_737116977f474ec0b68d88a40fd1086c",
|
||
"value": "dev-00000-of-00001.parquet: 100%"
|
||
}
|
||
},
|
||
"d1f32499fa3f4795b92361637e23a9bb": {
|
||
"model_module": "@jupyter-widgets/controls",
|
||
"model_module_version": "1.5.0",
|
||
"model_name": "DescriptionStyleModel",
|
||
"state": {
|
||
"_model_module": "@jupyter-widgets/controls",
|
||
"_model_module_version": "1.5.0",
|
||
"_model_name": "DescriptionStyleModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/base",
|
||
"_view_module_version": "1.2.0",
|
||
"_view_name": "StyleView",
|
||
"description_width": ""
|
||
}
|
||
},
|
||
"d2029292327b488db02fd123ee2b75af": {
|
||
"model_module": "@jupyter-widgets/base",
|
||
"model_module_version": "1.2.0",
|
||
"model_name": "LayoutModel",
|
||
"state": {
|
||
"_model_module": "@jupyter-widgets/base",
|
||
"_model_module_version": "1.2.0",
|
||
"_model_name": "LayoutModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/base",
|
||
"_view_module_version": "1.2.0",
|
||
"_view_name": "LayoutView",
|
||
"align_content": null,
|
||
"align_items": null,
|
||
"align_self": null,
|
||
"border": null,
|
||
"bottom": null,
|
||
"display": null,
|
||
"flex": null,
|
||
"flex_flow": null,
|
||
"grid_area": null,
|
||
"grid_auto_columns": null,
|
||
"grid_auto_flow": null,
|
||
"grid_auto_rows": null,
|
||
"grid_column": null,
|
||
"grid_gap": null,
|
||
"grid_row": null,
|
||
"grid_template_areas": null,
|
||
"grid_template_columns": null,
|
||
"grid_template_rows": null,
|
||
"height": null,
|
||
"justify_content": null,
|
||
"justify_items": null,
|
||
"left": null,
|
||
"margin": null,
|
||
"max_height": null,
|
||
"max_width": null,
|
||
"min_height": null,
|
||
"min_width": null,
|
||
"object_fit": null,
|
||
"object_position": null,
|
||
"order": null,
|
||
"overflow": null,
|
||
"overflow_x": null,
|
||
"overflow_y": null,
|
||
"padding": null,
|
||
"right": null,
|
||
"top": null,
|
||
"visibility": null,
|
||
"width": null
|
||
}
|
||
},
|
||
"d56e218958a041e286e80f24e400ab0b": {
|
||
"model_module": "@jupyter-widgets/base",
|
||
"model_module_version": "1.2.0",
|
||
"model_name": "LayoutModel",
|
||
"state": {
|
||
"_model_module": "@jupyter-widgets/base",
|
||
"_model_module_version": "1.2.0",
|
||
"_model_name": "LayoutModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/base",
|
||
"_view_module_version": "1.2.0",
|
||
"_view_name": "LayoutView",
|
||
"align_content": null,
|
||
"align_items": null,
|
||
"align_self": null,
|
||
"border": null,
|
||
"bottom": null,
|
||
"display": null,
|
||
"flex": null,
|
||
"flex_flow": null,
|
||
"grid_area": null,
|
||
"grid_auto_columns": null,
|
||
"grid_auto_flow": null,
|
||
"grid_auto_rows": null,
|
||
"grid_column": null,
|
||
"grid_gap": null,
|
||
"grid_row": null,
|
||
"grid_template_areas": null,
|
||
"grid_template_columns": null,
|
||
"grid_template_rows": null,
|
||
"height": null,
|
||
"justify_content": null,
|
||
"justify_items": null,
|
||
"left": null,
|
||
"margin": null,
|
||
"max_height": null,
|
||
"max_width": null,
|
||
"min_height": null,
|
||
"min_width": null,
|
||
"object_fit": null,
|
||
"object_position": null,
|
||
"order": null,
|
||
"overflow": null,
|
||
"overflow_x": null,
|
||
"overflow_y": null,
|
||
"padding": null,
|
||
"right": null,
|
||
"top": null,
|
||
"visibility": null,
|
||
"width": null
|
||
}
|
||
},
|
||
"da57445f98e7427589962836c2b4287e": {
|
||
"model_module": "@jupyter-widgets/base",
|
||
"model_module_version": "1.2.0",
|
||
"model_name": "LayoutModel",
|
||
"state": {
|
||
"_model_module": "@jupyter-widgets/base",
|
||
"_model_module_version": "1.2.0",
|
||
"_model_name": "LayoutModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/base",
|
||
"_view_module_version": "1.2.0",
|
||
"_view_name": "LayoutView",
|
||
"align_content": null,
|
||
"align_items": null,
|
||
"align_self": null,
|
||
"border": null,
|
||
"bottom": null,
|
||
"display": null,
|
||
"flex": null,
|
||
"flex_flow": null,
|
||
"grid_area": null,
|
||
"grid_auto_columns": null,
|
||
"grid_auto_flow": null,
|
||
"grid_auto_rows": null,
|
||
"grid_column": null,
|
||
"grid_gap": null,
|
||
"grid_row": null,
|
||
"grid_template_areas": null,
|
||
"grid_template_columns": null,
|
||
"grid_template_rows": null,
|
||
"height": null,
|
||
"justify_content": null,
|
||
"justify_items": null,
|
||
"left": null,
|
||
"margin": null,
|
||
"max_height": null,
|
||
"max_width": null,
|
||
"min_height": null,
|
||
"min_width": null,
|
||
"object_fit": null,
|
||
"object_position": null,
|
||
"order": null,
|
||
"overflow": null,
|
||
"overflow_x": null,
|
||
"overflow_y": null,
|
||
"padding": null,
|
||
"right": null,
|
||
"top": null,
|
||
"visibility": null,
|
||
"width": null
|
||
}
|
||
},
|
||
"dec6399e2c5341aead66e1674d3e6c72": {
|
||
"model_module": "@jupyter-widgets/controls",
|
||
"model_module_version": "1.5.0",
|
||
"model_name": "DescriptionStyleModel",
|
||
"state": {
|
||
"_model_module": "@jupyter-widgets/controls",
|
||
"_model_module_version": "1.5.0",
|
||
"_model_name": "DescriptionStyleModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/base",
|
||
"_view_module_version": "1.2.0",
|
||
"_view_name": "StyleView",
|
||
"description_width": ""
|
||
}
|
||
},
|
||
"e17d286a965a49cfb8d5bf885865cb1e": {
|
||
"model_module": "@jupyter-widgets/base",
|
||
"model_module_version": "1.2.0",
|
||
"model_name": "LayoutModel",
|
||
"state": {
|
||
"_model_module": "@jupyter-widgets/base",
|
||
"_model_module_version": "1.2.0",
|
||
"_model_name": "LayoutModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/base",
|
||
"_view_module_version": "1.2.0",
|
||
"_view_name": "LayoutView",
|
||
"align_content": null,
|
||
"align_items": null,
|
||
"align_self": null,
|
||
"border": null,
|
||
"bottom": null,
|
||
"display": null,
|
||
"flex": null,
|
||
"flex_flow": null,
|
||
"grid_area": null,
|
||
"grid_auto_columns": null,
|
||
"grid_auto_flow": null,
|
||
"grid_auto_rows": null,
|
||
"grid_column": null,
|
||
"grid_gap": null,
|
||
"grid_row": null,
|
||
"grid_template_areas": null,
|
||
"grid_template_columns": null,
|
||
"grid_template_rows": null,
|
||
"height": null,
|
||
"justify_content": null,
|
||
"justify_items": null,
|
||
"left": null,
|
||
"margin": null,
|
||
"max_height": null,
|
||
"max_width": null,
|
||
"min_height": null,
|
||
"min_width": null,
|
||
"object_fit": null,
|
||
"object_position": null,
|
||
"order": null,
|
||
"overflow": null,
|
||
"overflow_x": null,
|
||
"overflow_y": null,
|
||
"padding": null,
|
||
"right": null,
|
||
"top": null,
|
||
"visibility": null,
|
||
"width": null
|
||
}
|
||
},
|
||
"e51d501e2f994baba40345ad632eabee": {
|
||
"model_module": "@jupyter-widgets/controls",
|
||
"model_module_version": "1.5.0",
|
||
"model_name": "HTMLModel",
|
||
"state": {
|
||
"_dom_classes": [],
|
||
"_model_module": "@jupyter-widgets/controls",
|
||
"_model_module_version": "1.5.0",
|
||
"_model_name": "HTMLModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/controls",
|
||
"_view_module_version": "1.5.0",
|
||
"_view_name": "HTMLView",
|
||
"description": "",
|
||
"description_tooltip": null,
|
||
"layout": "IPY_MODEL_7c4d1de626784a59a7e0a33c24086186",
|
||
"placeholder": "",
|
||
"style": "IPY_MODEL_21cf0e35ecd845a8b5e7c5ce241cf177",
|
||
"value": " 287/287 [00:23<00:00, 12.48 examples/s]"
|
||
}
|
||
},
|
||
"e6d6e516cd03452297d80c36376855dd": {
|
||
"model_module": "@jupyter-widgets/base",
|
||
"model_module_version": "1.2.0",
|
||
"model_name": "LayoutModel",
|
||
"state": {
|
||
"_model_module": "@jupyter-widgets/base",
|
||
"_model_module_version": "1.2.0",
|
||
"_model_name": "LayoutModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/base",
|
||
"_view_module_version": "1.2.0",
|
||
"_view_name": "LayoutView",
|
||
"align_content": null,
|
||
"align_items": null,
|
||
"align_self": null,
|
||
"border": null,
|
||
"bottom": null,
|
||
"display": null,
|
||
"flex": null,
|
||
"flex_flow": null,
|
||
"grid_area": null,
|
||
"grid_auto_columns": null,
|
||
"grid_auto_flow": null,
|
||
"grid_auto_rows": null,
|
||
"grid_column": null,
|
||
"grid_gap": null,
|
||
"grid_row": null,
|
||
"grid_template_areas": null,
|
||
"grid_template_columns": null,
|
||
"grid_template_rows": null,
|
||
"height": null,
|
||
"justify_content": null,
|
||
"justify_items": null,
|
||
"left": null,
|
||
"margin": null,
|
||
"max_height": null,
|
||
"max_width": null,
|
||
"min_height": null,
|
||
"min_width": null,
|
||
"object_fit": null,
|
||
"object_position": null,
|
||
"order": null,
|
||
"overflow": null,
|
||
"overflow_x": null,
|
||
"overflow_y": null,
|
||
"padding": null,
|
||
"right": null,
|
||
"top": null,
|
||
"visibility": null,
|
||
"width": null
|
||
}
|
||
},
|
||
"f0dfeee2a8d64dedbc8ef55ad4e69932": {
|
||
"model_module": "@jupyter-widgets/controls",
|
||
"model_module_version": "1.5.0",
|
||
"model_name": "FloatProgressModel",
|
||
"state": {
|
||
"_dom_classes": [],
|
||
"_model_module": "@jupyter-widgets/controls",
|
||
"_model_module_version": "1.5.0",
|
||
"_model_name": "FloatProgressModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/controls",
|
||
"_view_module_version": "1.5.0",
|
||
"_view_name": "ProgressView",
|
||
"bar_style": "success",
|
||
"description": "",
|
||
"description_tooltip": null,
|
||
"layout": "IPY_MODEL_201bd914f9884e46b8e6df9d9900a6e8",
|
||
"max": 5,
|
||
"min": 0,
|
||
"orientation": "horizontal",
|
||
"style": "IPY_MODEL_f53b7ada01084e73bba6e14a95e2a534",
|
||
"value": 5
|
||
}
|
||
},
|
||
"f255707788704a76bd1651f26a22402d": {
|
||
"model_module": "@jupyter-widgets/base",
|
||
"model_module_version": "1.2.0",
|
||
"model_name": "LayoutModel",
|
||
"state": {
|
||
"_model_module": "@jupyter-widgets/base",
|
||
"_model_module_version": "1.2.0",
|
||
"_model_name": "LayoutModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/base",
|
||
"_view_module_version": "1.2.0",
|
||
"_view_name": "LayoutView",
|
||
"align_content": null,
|
||
"align_items": null,
|
||
"align_self": null,
|
||
"border": null,
|
||
"bottom": null,
|
||
"display": null,
|
||
"flex": null,
|
||
"flex_flow": null,
|
||
"grid_area": null,
|
||
"grid_auto_columns": null,
|
||
"grid_auto_flow": null,
|
||
"grid_auto_rows": null,
|
||
"grid_column": null,
|
||
"grid_gap": null,
|
||
"grid_row": null,
|
||
"grid_template_areas": null,
|
||
"grid_template_columns": null,
|
||
"grid_template_rows": null,
|
||
"height": null,
|
||
"justify_content": null,
|
||
"justify_items": null,
|
||
"left": null,
|
||
"margin": null,
|
||
"max_height": null,
|
||
"max_width": null,
|
||
"min_height": null,
|
||
"min_width": null,
|
||
"object_fit": null,
|
||
"object_position": null,
|
||
"order": null,
|
||
"overflow": null,
|
||
"overflow_x": null,
|
||
"overflow_y": null,
|
||
"padding": null,
|
||
"right": null,
|
||
"top": null,
|
||
"visibility": null,
|
||
"width": null
|
||
}
|
||
},
|
||
"f53b7ada01084e73bba6e14a95e2a534": {
|
||
"model_module": "@jupyter-widgets/controls",
|
||
"model_module_version": "1.5.0",
|
||
"model_name": "ProgressStyleModel",
|
||
"state": {
|
||
"_model_module": "@jupyter-widgets/controls",
|
||
"_model_module_version": "1.5.0",
|
||
"_model_name": "ProgressStyleModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/base",
|
||
"_view_module_version": "1.2.0",
|
||
"_view_name": "StyleView",
|
||
"bar_color": null,
|
||
"description_width": ""
|
||
}
|
||
},
|
||
"f5b34a743ce54fb591f25b04a2651d65": {
|
||
"model_module": "@jupyter-widgets/base",
|
||
"model_module_version": "1.2.0",
|
||
"model_name": "LayoutModel",
|
||
"state": {
|
||
"_model_module": "@jupyter-widgets/base",
|
||
"_model_module_version": "1.2.0",
|
||
"_model_name": "LayoutModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/base",
|
||
"_view_module_version": "1.2.0",
|
||
"_view_name": "LayoutView",
|
||
"align_content": null,
|
||
"align_items": null,
|
||
"align_self": null,
|
||
"border": null,
|
||
"bottom": null,
|
||
"display": null,
|
||
"flex": null,
|
||
"flex_flow": null,
|
||
"grid_area": null,
|
||
"grid_auto_columns": null,
|
||
"grid_auto_flow": null,
|
||
"grid_auto_rows": null,
|
||
"grid_column": null,
|
||
"grid_gap": null,
|
||
"grid_row": null,
|
||
"grid_template_areas": null,
|
||
"grid_template_columns": null,
|
||
"grid_template_rows": null,
|
||
"height": null,
|
||
"justify_content": null,
|
||
"justify_items": null,
|
||
"left": null,
|
||
"margin": null,
|
||
"max_height": null,
|
||
"max_width": null,
|
||
"min_height": null,
|
||
"min_width": null,
|
||
"object_fit": null,
|
||
"object_position": null,
|
||
"order": null,
|
||
"overflow": null,
|
||
"overflow_x": null,
|
||
"overflow_y": null,
|
||
"padding": null,
|
||
"right": null,
|
||
"top": null,
|
||
"visibility": null,
|
||
"width": null
|
||
}
|
||
},
|
||
"f9e579c58e3f4ae0bbb721dffa33bf0a": {
|
||
"model_module": "@jupyter-widgets/base",
|
||
"model_module_version": "1.2.0",
|
||
"model_name": "LayoutModel",
|
||
"state": {
|
||
"_model_module": "@jupyter-widgets/base",
|
||
"_model_module_version": "1.2.0",
|
||
"_model_name": "LayoutModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/base",
|
||
"_view_module_version": "1.2.0",
|
||
"_view_name": "LayoutView",
|
||
"align_content": null,
|
||
"align_items": null,
|
||
"align_self": null,
|
||
"border": null,
|
||
"bottom": null,
|
||
"display": null,
|
||
"flex": null,
|
||
"flex_flow": null,
|
||
"grid_area": null,
|
||
"grid_auto_columns": null,
|
||
"grid_auto_flow": null,
|
||
"grid_auto_rows": null,
|
||
"grid_column": null,
|
||
"grid_gap": null,
|
||
"grid_row": null,
|
||
"grid_template_areas": null,
|
||
"grid_template_columns": null,
|
||
"grid_template_rows": null,
|
||
"height": null,
|
||
"justify_content": null,
|
||
"justify_items": null,
|
||
"left": null,
|
||
"margin": null,
|
||
"max_height": null,
|
||
"max_width": null,
|
||
"min_height": null,
|
||
"min_width": null,
|
||
"object_fit": null,
|
||
"object_position": null,
|
||
"order": null,
|
||
"overflow": null,
|
||
"overflow_x": null,
|
||
"overflow_y": null,
|
||
"padding": null,
|
||
"right": null,
|
||
"top": null,
|
||
"visibility": null,
|
||
"width": null
|
||
}
|
||
},
|
||
"fa4800a506ac480984d58933580df086": {
|
||
"model_module": "@jupyter-widgets/base",
|
||
"model_module_version": "1.2.0",
|
||
"model_name": "LayoutModel",
|
||
"state": {
|
||
"_model_module": "@jupyter-widgets/base",
|
||
"_model_module_version": "1.2.0",
|
||
"_model_name": "LayoutModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/base",
|
||
"_view_module_version": "1.2.0",
|
||
"_view_name": "LayoutView",
|
||
"align_content": null,
|
||
"align_items": null,
|
||
"align_self": null,
|
||
"border": null,
|
||
"bottom": null,
|
||
"display": null,
|
||
"flex": null,
|
||
"flex_flow": null,
|
||
"grid_area": null,
|
||
"grid_auto_columns": null,
|
||
"grid_auto_flow": null,
|
||
"grid_auto_rows": null,
|
||
"grid_column": null,
|
||
"grid_gap": null,
|
||
"grid_row": null,
|
||
"grid_template_areas": null,
|
||
"grid_template_columns": null,
|
||
"grid_template_rows": null,
|
||
"height": null,
|
||
"justify_content": null,
|
||
"justify_items": null,
|
||
"left": null,
|
||
"margin": null,
|
||
"max_height": null,
|
||
"max_width": null,
|
||
"min_height": null,
|
||
"min_width": null,
|
||
"object_fit": null,
|
||
"object_position": null,
|
||
"order": null,
|
||
"overflow": null,
|
||
"overflow_x": null,
|
||
"overflow_y": null,
|
||
"padding": null,
|
||
"right": null,
|
||
"top": null,
|
||
"visibility": null,
|
||
"width": null
|
||
}
|
||
},
|
||
"fb644d47049f495397d0e60597c86ea3": {
|
||
"model_module": "@jupyter-widgets/controls",
|
||
"model_module_version": "1.5.0",
|
||
"model_name": "FloatProgressModel",
|
||
"state": {
|
||
"_dom_classes": [],
|
||
"_model_module": "@jupyter-widgets/controls",
|
||
"_model_module_version": "1.5.0",
|
||
"_model_name": "FloatProgressModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/controls",
|
||
"_view_module_version": "1.5.0",
|
||
"_view_name": "ProgressView",
|
||
"bar_style": "success",
|
||
"description": "",
|
||
"description_tooltip": null,
|
||
"layout": "IPY_MODEL_3d0344a9cc744e369da1b6b7ea1b3be8",
|
||
"max": 165333397,
|
||
"min": 0,
|
||
"orientation": "horizontal",
|
||
"style": "IPY_MODEL_c452ccbf47a44073aee710175f707a7d",
|
||
"value": 165333397
|
||
}
|
||
},
|
||
"fdefb51ad4c4418b98c5826126558011": {
|
||
"model_module": "@jupyter-widgets/controls",
|
||
"model_module_version": "1.5.0",
|
||
"model_name": "DescriptionStyleModel",
|
||
"state": {
|
||
"_model_module": "@jupyter-widgets/controls",
|
||
"_model_module_version": "1.5.0",
|
||
"_model_name": "DescriptionStyleModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/base",
|
||
"_view_module_version": "1.2.0",
|
||
"_view_name": "StyleView",
|
||
"description_width": ""
|
||
}
|
||
},
|
||
"fe7553b513954cc68c427b5d9d260b33": {
|
||
"model_module": "@jupyter-widgets/controls",
|
||
"model_module_version": "1.5.0",
|
||
"model_name": "FloatProgressModel",
|
||
"state": {
|
||
"_dom_classes": [],
|
||
"_model_module": "@jupyter-widgets/controls",
|
||
"_model_module_version": "1.5.0",
|
||
"_model_name": "FloatProgressModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/controls",
|
||
"_view_module_version": "1.5.0",
|
||
"_view_name": "ProgressView",
|
||
"bar_style": "success",
|
||
"description": "",
|
||
"description_tooltip": null,
|
||
"layout": "IPY_MODEL_179d41b80dc841e8a440482516b8bca5",
|
||
"max": 461411018,
|
||
"min": 0,
|
||
"orientation": "horizontal",
|
||
"style": "IPY_MODEL_22b1ecd2eff14770bcfb0c62d3d4213f",
|
||
"value": 461411018
|
||
}
|
||
},
|
||
"feb82e061ee44283b4a46be858ef4cd7": {
|
||
"model_module": "@jupyter-widgets/controls",
|
||
"model_module_version": "1.5.0",
|
||
"model_name": "HBoxModel",
|
||
"state": {
|
||
"_dom_classes": [],
|
||
"_model_module": "@jupyter-widgets/controls",
|
||
"_model_module_version": "1.5.0",
|
||
"_model_name": "HBoxModel",
|
||
"_view_count": null,
|
||
"_view_module": "@jupyter-widgets/controls",
|
||
"_view_module_version": "1.5.0",
|
||
"_view_name": "HBoxView",
|
||
"box_style": "",
|
||
"children": [
|
||
"IPY_MODEL_78a2d2d4ee3f42f3be42ef4baa298561",
|
||
"IPY_MODEL_ba5e6ca09f174ef3a348453cf5cfc24a",
|
||
"IPY_MODEL_74b58e4647644c9daf9af488942fdaf4"
|
||
],
|
||
"layout": "IPY_MODEL_d56e218958a041e286e80f24e400ab0b"
|
||
}
|
||
}
|
||
}
|
||
}
|
||
},
|
||
"nbformat": 4,
|
||
"nbformat_minor": 0
|
||
}
|