llama-stack/llama_stack/apis/vector_io/vector_io.py
Sébastien Han bb5fca9521
chore: more API validators (#2165)
# What does this PR do?

We added:

* make sure docstrings are present with 'params' and 'returns'
* fail if someone sets 'returns: None'
* fix the failing APIs

Signed-off-by: Sébastien Han <seb@redhat.com>
2025-05-15 11:22:51 -07:00

72 lines
2.3 KiB
Python

# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from typing import Any, Protocol, runtime_checkable
from pydantic import BaseModel, Field
from llama_stack.apis.inference import InterleavedContent
from llama_stack.apis.vector_dbs import VectorDB
from llama_stack.providers.utils.telemetry.trace_protocol import trace_protocol
from llama_stack.schema_utils import json_schema_type, webmethod
class Chunk(BaseModel):
content: InterleavedContent
metadata: dict[str, Any] = Field(default_factory=dict)
@json_schema_type
class QueryChunksResponse(BaseModel):
chunks: list[Chunk]
scores: list[float]
class VectorDBStore(Protocol):
def get_vector_db(self, vector_db_id: str) -> VectorDB | None: ...
@runtime_checkable
@trace_protocol
class VectorIO(Protocol):
vector_db_store: VectorDBStore | None = None
# this will just block now until chunks are inserted, but it should
# probably return a Job instance which can be polled for completion
@webmethod(route="/vector-io/insert", method="POST")
async def insert_chunks(
self,
vector_db_id: str,
chunks: list[Chunk],
ttl_seconds: int | None = None,
) -> None:
"""Insert chunks into a vector database.
:param vector_db_id: The identifier of the vector database to insert the chunks into.
:param chunks: The chunks to insert.
:param ttl_seconds: The time to live of the chunks.
"""
...
@webmethod(route="/vector-io/query", method="POST")
async def query_chunks(
self,
vector_db_id: str,
query: InterleavedContent,
params: dict[str, Any] | None = None,
) -> QueryChunksResponse:
"""Query chunks from a vector database.
:param vector_db_id: The identifier of the vector database to query.
:param query: The query to search for.
:param params: The parameters of the query.
:returns: A QueryChunksResponse.
"""
...