llama-stack/tests/verifications/openai/test_chat_completion.py
ehhuang bcbc56baa2
feat: adds test suite to verify provider's OAI compat endpoints (#1901)
# What does this PR do?


## Test Plan
pytest verifications/openai/test_chat_completion.py --provider together
2025-04-08 21:21:38 -07:00

202 lines
7.1 KiB
Python

# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from typing import Any
import pytest
from pydantic import BaseModel
from tests.verifications.openai.fixtures.load import load_test_cases
chat_completion_test_cases = load_test_cases("chat_completion")
@pytest.fixture
def correct_model_name(model, provider, providers_model_mapping):
"""Return the provider-specific model name based on the generic model name."""
mapping = providers_model_mapping[provider]
if model not in mapping:
pytest.skip(f"Provider {provider} does not support model {model}")
return mapping[model]
@pytest.mark.parametrize("model", chat_completion_test_cases["test_chat_basic"]["test_params"]["model"])
@pytest.mark.parametrize(
"input_output",
chat_completion_test_cases["test_chat_basic"]["test_params"]["input_output"],
)
def test_chat_non_streaming_basic(openai_client, input_output, correct_model_name):
response = openai_client.chat.completions.create(
model=correct_model_name,
messages=input_output["input"]["messages"],
stream=False,
)
assert response.choices[0].message.role == "assistant"
assert input_output["output"].lower() in response.choices[0].message.content.lower()
@pytest.mark.parametrize("model", chat_completion_test_cases["test_chat_basic"]["test_params"]["model"])
@pytest.mark.parametrize(
"input_output",
chat_completion_test_cases["test_chat_basic"]["test_params"]["input_output"],
)
def test_chat_streaming_basic(openai_client, input_output, correct_model_name):
response = openai_client.chat.completions.create(
model=correct_model_name,
messages=input_output["input"]["messages"],
stream=True,
)
content = ""
for chunk in response:
content += chunk.choices[0].delta.content or ""
# TODO: add detailed type validation
assert input_output["output"].lower() in content.lower()
@pytest.mark.parametrize("model", chat_completion_test_cases["test_chat_image"]["test_params"]["model"])
@pytest.mark.parametrize(
"input_output",
chat_completion_test_cases["test_chat_image"]["test_params"]["input_output"],
)
def test_chat_non_streaming_image(openai_client, input_output, correct_model_name):
response = openai_client.chat.completions.create(
model=correct_model_name,
messages=input_output["input"]["messages"],
stream=False,
)
assert response.choices[0].message.role == "assistant"
assert input_output["output"].lower() in response.choices[0].message.content.lower()
@pytest.mark.parametrize("model", chat_completion_test_cases["test_chat_image"]["test_params"]["model"])
@pytest.mark.parametrize(
"input_output",
chat_completion_test_cases["test_chat_image"]["test_params"]["input_output"],
)
def test_chat_streaming_image(openai_client, input_output, correct_model_name):
response = openai_client.chat.completions.create(
model=correct_model_name,
messages=input_output["input"]["messages"],
stream=True,
)
content = ""
for chunk in response:
content += chunk.choices[0].delta.content or ""
# TODO: add detailed type validation
assert input_output["output"].lower() in content.lower()
@pytest.mark.parametrize(
"model",
chat_completion_test_cases["test_chat_structured_output"]["test_params"]["model"],
)
@pytest.mark.parametrize(
"input_output",
chat_completion_test_cases["test_chat_structured_output"]["test_params"]["input_output"],
)
def test_chat_non_streaming_structured_output(openai_client, input_output, correct_model_name):
response = openai_client.chat.completions.create(
model=correct_model_name,
messages=input_output["input"]["messages"],
response_format=input_output["input"]["response_format"],
stream=False,
)
assert response.choices[0].message.role == "assistant"
maybe_json_content = response.choices[0].message.content
validate_structured_output(maybe_json_content, input_output["output"])
@pytest.mark.parametrize(
"model",
chat_completion_test_cases["test_chat_structured_output"]["test_params"]["model"],
)
@pytest.mark.parametrize(
"input_output",
chat_completion_test_cases["test_chat_structured_output"]["test_params"]["input_output"],
)
def test_chat_streaming_structured_output(openai_client, input_output, correct_model_name):
response = openai_client.chat.completions.create(
model=correct_model_name,
messages=input_output["input"]["messages"],
response_format=input_output["input"]["response_format"],
stream=True,
)
maybe_json_content = ""
for chunk in response:
maybe_json_content += chunk.choices[0].delta.content or ""
validate_structured_output(maybe_json_content, input_output["output"])
@pytest.mark.parametrize(
"model",
chat_completion_test_cases["test_tool_calling"]["test_params"]["model"],
)
@pytest.mark.parametrize(
"input_output",
chat_completion_test_cases["test_tool_calling"]["test_params"]["input_output"],
)
def test_chat_non_streaming_tool_calling(openai_client, input_output, correct_model_name):
response = openai_client.chat.completions.create(
model=correct_model_name,
messages=input_output["input"]["messages"],
tools=input_output["input"]["tools"],
stream=False,
)
assert response.choices[0].message.role == "assistant"
assert len(response.choices[0].message.tool_calls) > 0
assert input_output["output"] == "get_weather_tool_call"
assert response.choices[0].message.tool_calls[0].function.name == "get_weather"
# TODO: add detailed type validation
def get_structured_output(maybe_json_content: str, schema_name: str) -> Any | None:
if schema_name == "valid_calendar_event":
class CalendarEvent(BaseModel):
name: str
date: str
participants: list[str]
try:
calendar_event = CalendarEvent.model_validate_json(maybe_json_content)
return calendar_event
except Exception:
return None
elif schema_name == "valid_math_reasoning":
class Step(BaseModel):
explanation: str
output: str
class MathReasoning(BaseModel):
steps: list[Step]
final_answer: str
try:
math_reasoning = MathReasoning.model_validate_json(maybe_json_content)
return math_reasoning
except Exception:
return None
return None
def validate_structured_output(maybe_json_content: str, schema_name: str) -> None:
structured_output = get_structured_output(maybe_json_content, schema_name)
assert structured_output is not None
if schema_name == "valid_calendar_event":
assert structured_output.name is not None
assert structured_output.date is not None
assert len(structured_output.participants) == 2
elif schema_name == "valid_math_reasoning":
assert len(structured_output.final_answer) > 0