forked from phoenix-oss/llama-stack-mirror
# What does this PR do? - To make it easier, delete existing `eval/scoring/scoring_function` apis. There will be a bunch of broken impls here. The sequence is: 1. migrate benchmark graders 2. clean up existing scoring functions - Add a skeleton evaluation impl to make tests pass. ## Test Plan tested in following PRs [//]: # (## Documentation)
104 lines
3.4 KiB
Python
104 lines
3.4 KiB
Python
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
|
# All rights reserved.
|
|
#
|
|
# This source code is licensed under the terms described in the LICENSE file in
|
|
# the root directory of this source tree.
|
|
import uuid
|
|
from pathlib import Path
|
|
|
|
import pytest
|
|
|
|
from ..datasets.test_datasets import data_url_from_file
|
|
|
|
# How to run this test:
|
|
#
|
|
# LLAMA_STACK_CONFIG="template-name" pytest -v tests/integration/eval
|
|
|
|
|
|
@pytest.mark.parametrize("scoring_fn_id", ["basic::equality"])
|
|
@pytest.mark.skip(reason="TODO(xiyan): fix this")
|
|
def test_evaluate_rows(llama_stack_client, text_model_id, scoring_fn_id):
|
|
dataset = llama_stack_client.datasets.register(
|
|
purpose="eval/messages-answer",
|
|
source={
|
|
"type": "uri",
|
|
"uri": data_url_from_file(Path(__file__).parent.parent / "datasets" / "test_dataset.csv"),
|
|
},
|
|
)
|
|
response = llama_stack_client.datasets.list()
|
|
assert any(x.identifier == dataset.identifier for x in response)
|
|
|
|
rows = llama_stack_client.datasets.iterrows(
|
|
dataset_id=dataset.identifier,
|
|
limit=3,
|
|
)
|
|
assert len(rows.data) == 3
|
|
|
|
scoring_functions = [
|
|
scoring_fn_id,
|
|
]
|
|
benchmark_id = str(uuid.uuid4())
|
|
llama_stack_client.benchmarks.register(
|
|
benchmark_id=benchmark_id,
|
|
dataset_id=dataset.identifier,
|
|
scoring_functions=scoring_functions,
|
|
)
|
|
list_benchmarks = llama_stack_client.benchmarks.list()
|
|
assert any(x.identifier == benchmark_id for x in list_benchmarks)
|
|
|
|
response = llama_stack_client.eval.evaluate_rows(
|
|
benchmark_id=benchmark_id,
|
|
input_rows=rows.data,
|
|
scoring_functions=scoring_functions,
|
|
benchmark_config={
|
|
"eval_candidate": {
|
|
"type": "model",
|
|
"model": text_model_id,
|
|
"sampling_params": {
|
|
"temperature": 0.0,
|
|
},
|
|
},
|
|
},
|
|
)
|
|
|
|
assert len(response.generations) == 3
|
|
assert scoring_fn_id in response.scores
|
|
|
|
|
|
@pytest.mark.parametrize("scoring_fn_id", ["basic::subset_of"])
|
|
@pytest.mark.skip(reason="TODO(xiyan): fix this")
|
|
def test_evaluate_benchmark(llama_stack_client, text_model_id, scoring_fn_id):
|
|
dataset = llama_stack_client.datasets.register(
|
|
purpose="eval/messages-answer",
|
|
source={
|
|
"type": "uri",
|
|
"uri": data_url_from_file(Path(__file__).parent.parent / "datasets" / "test_dataset.csv"),
|
|
},
|
|
)
|
|
benchmark_id = str(uuid.uuid4())
|
|
llama_stack_client.benchmarks.register(
|
|
benchmark_id=benchmark_id,
|
|
dataset_id=dataset.identifier,
|
|
scoring_functions=[scoring_fn_id],
|
|
)
|
|
|
|
response = llama_stack_client.eval.run_eval(
|
|
benchmark_id=benchmark_id,
|
|
benchmark_config={
|
|
"eval_candidate": {
|
|
"type": "model",
|
|
"model": text_model_id,
|
|
"sampling_params": {
|
|
"temperature": 0.0,
|
|
},
|
|
},
|
|
},
|
|
)
|
|
assert response.job_id == "0"
|
|
job_status = llama_stack_client.eval.jobs.status(job_id=response.job_id, benchmark_id=benchmark_id)
|
|
assert job_status and job_status == "completed"
|
|
|
|
eval_response = llama_stack_client.eval.jobs.retrieve(job_id=response.job_id, benchmark_id=benchmark_id)
|
|
assert eval_response is not None
|
|
assert len(eval_response.generations) == 5
|
|
assert scoring_fn_id in eval_response.scores
|