forked from phoenix-oss/llama-stack-mirror
### Context In this PR, we - Implement the post training job management and get training artifacts apis - get_training_jobs - get_training_job_status - get_training_job_artifacts - get_training_job_logstream is deleted since the trace can be directly accessed by UI with Jaeger https://llama-stack.readthedocs.io/en/latest/building_applications/telemetry.html#jaeger-to-visualize-traces - Refactor the post training and training types definition to make them more intuitive. - Rewrite the checkpointer to make it compatible with llama-stack file system and can be recognized during inference ### Test Unit test `pytest llama_stack/providers/tests/post_training/test_post_training.py -m "torchtune_post_training_huggingface_datasetio" -v -s --tb=short --disable-warnings` <img width="1506" alt="Screenshot 2024-12-10 at 4 06 17 PM" src="https://github.com/user-attachments/assets/16225029-bdb7-48c4-9d13-e580cc769c0a"> e2e test with client side call <img width="888" alt="Screenshot 2024-12-10 at 4 09 44 PM" src="https://github.com/user-attachments/assets/de375e4c-ef67-4dcc-a045-4037d9489191"> |
||
---|---|---|
.. | ||
agents | ||
batch_inference | ||
common | ||
datasetio | ||
datasets | ||
eval | ||
eval_tasks | ||
inference | ||
inspect | ||
memory | ||
memory_banks | ||
models | ||
post_training | ||
safety | ||
scoring | ||
scoring_functions | ||
shields | ||
synthetic_data_generation | ||
telemetry | ||
__init__.py | ||
resource.py | ||
version.py |