forked from phoenix-oss/llama-stack-mirror
346 lines
14 KiB
Python
346 lines
14 KiB
Python
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
|
# All rights reserved.
|
|
#
|
|
# This source code is licensed under the terms described in the LICENSE file in
|
|
# the root directory of this source tree.
|
|
|
|
|
|
import json
|
|
import os
|
|
import sys
|
|
import time
|
|
from pathlib import Path
|
|
from typing import Callable, Generator, Optional, Union
|
|
|
|
import torch
|
|
import torch.nn.functional as F
|
|
from fairscale.nn.model_parallel.initialize import (
|
|
get_model_parallel_rank,
|
|
initialize_model_parallel,
|
|
model_parallel_is_initialized,
|
|
)
|
|
|
|
from llama_stack.apis.inference import (
|
|
Fp8QuantizationConfig,
|
|
Int4QuantizationConfig,
|
|
)
|
|
from llama_stack.log import get_logger
|
|
from llama_stack.models.llama.datatypes import Model
|
|
from llama_stack.models.llama.llama3.chat_format import ChatFormat, LLMInput
|
|
from llama_stack.models.llama.llama3.tokenizer import Tokenizer
|
|
from llama_stack.models.llama.sku_list import resolve_model
|
|
|
|
from ..common import TokenResult, model_checkpoint_dir
|
|
from ..config import MetaReferenceInferenceConfig, MetaReferenceQuantizedInferenceConfig
|
|
from .args import ModelArgs
|
|
from .model import Transformer
|
|
from .multimodal.model import CrossAttentionTransformer
|
|
|
|
log = get_logger(__name__, category="inference")
|
|
|
|
|
|
class Llama3:
|
|
@staticmethod
|
|
def build(
|
|
config: Union[MetaReferenceInferenceConfig, MetaReferenceQuantizedInferenceConfig],
|
|
model_id: str,
|
|
llama_model: Model,
|
|
):
|
|
"""
|
|
Build a Llama instance by initializing and loading a model checkpoint.
|
|
|
|
Note:
|
|
This method initializes the distributed process group, sets the device to CUDA,
|
|
and loads the pre-trained model and tokenizer.
|
|
"""
|
|
if "DEVICE" in os.environ:
|
|
device = os.environ.get("DEVICE")
|
|
if device == "cuda":
|
|
assert torch.cuda.is_available(), "PyTorch CUDA backend not available"
|
|
if device == "xpu":
|
|
assert torch.xpu.is_available(), "PyTorch XPU backend not available"
|
|
else:
|
|
if torch.cuda.is_available():
|
|
device = "cuda"
|
|
elif torch.xpu.is_available():
|
|
device = "xpu"
|
|
else:
|
|
device = "cpu"
|
|
log.info(f"Using {device} device")
|
|
|
|
llama_model_id = llama_model.core_model_id.value
|
|
if not torch.distributed.is_initialized():
|
|
if device == "cuda":
|
|
torch.distributed.init_process_group("nccl")
|
|
else:
|
|
torch.distributed.init_process_group("gloo")
|
|
|
|
model_parallel_size = llama_model.pth_file_count
|
|
|
|
if not model_parallel_is_initialized():
|
|
initialize_model_parallel(model_parallel_size)
|
|
|
|
local_rank = int(os.environ.get("LOCAL_RANK", 0))
|
|
if device == "cuda":
|
|
torch.cuda.set_device(local_rank)
|
|
elif device == "xpu":
|
|
torch.xpu.set_device(local_rank)
|
|
|
|
# seed must be the same in all processes
|
|
if config.torch_seed is not None:
|
|
torch.manual_seed(config.torch_seed)
|
|
|
|
if local_rank > 0:
|
|
sys.stdout = open(os.devnull, "w")
|
|
|
|
start_time = time.time()
|
|
if config.checkpoint_dir and config.checkpoint_dir != "null":
|
|
ckpt_dir = config.checkpoint_dir
|
|
else:
|
|
resolved_model = resolve_model(model_id)
|
|
if resolved_model is None:
|
|
# if the model is not a native llama model, get the default checkpoint_dir based on model id
|
|
ckpt_dir = model_checkpoint_dir(model_id)
|
|
else:
|
|
# if the model is a native llama model, get the default checkpoint_dir based on model core_model_id value
|
|
ckpt_dir = model_checkpoint_dir(resolved_model.descriptor())
|
|
|
|
checkpoints = sorted(Path(ckpt_dir).glob("*.pth"))
|
|
assert len(checkpoints) > 0, f"no checkpoint files found in {ckpt_dir}"
|
|
assert model_parallel_size == len(checkpoints), (
|
|
f"Loading a checkpoint for MP={len(checkpoints)} but world size is {model_parallel_size}"
|
|
)
|
|
ckpt_path = checkpoints[get_model_parallel_rank()]
|
|
state_dict = torch.load(ckpt_path, map_location="cpu", weights_only=True)
|
|
with open(Path(ckpt_dir) / "params.json", "r") as f:
|
|
params = json.loads(f.read())
|
|
|
|
if "model" in params:
|
|
params = params["model"]
|
|
|
|
model_args: ModelArgs = ModelArgs(
|
|
max_seq_len=config.max_seq_len,
|
|
max_batch_size=config.max_batch_size,
|
|
**params,
|
|
)
|
|
|
|
tokenizer = Tokenizer.get_instance()
|
|
assert model_args.vocab_size == tokenizer.n_words, (
|
|
f"model_args vocab = {model_args.vocab_size} but tokenizer vocab = {tokenizer.n_words}"
|
|
)
|
|
|
|
if isinstance(config, MetaReferenceQuantizedInferenceConfig):
|
|
if isinstance(config.quantization, Fp8QuantizationConfig):
|
|
from .quantization.loader import convert_to_fp8_quantized_model
|
|
|
|
# load on CPU in bf16 so that fp8 conversion does not find an
|
|
# unexpected (fp32, e.g.) datatype
|
|
torch.set_default_tensor_type(torch.BFloat16Tensor)
|
|
if model_args.vision_chunk_size > 0:
|
|
model = CrossAttentionTransformer(model_args)
|
|
model.setup_cache(model_args.max_batch_size, torch.bfloat16)
|
|
else:
|
|
model = Transformer(model_args)
|
|
model.load_state_dict(state_dict, strict=False)
|
|
model = convert_to_fp8_quantized_model(model, config, ckpt_dir)
|
|
elif isinstance(config.quantization, Int4QuantizationConfig):
|
|
from .quantization.loader import convert_to_int4_quantized_model
|
|
|
|
model = Transformer(model_args)
|
|
model = convert_to_int4_quantized_model(model, model_args, config)
|
|
model.load_state_dict(state_dict, strict=True)
|
|
|
|
if model_args.quantization_args is not None and model_args.quantization_args.spinquant:
|
|
# Add a wrapper for adding hadamard transform for spinquant.
|
|
# This needs to be done after loading the state dict otherwise an error will be raised while
|
|
# loading the state dict.
|
|
from ..hadamard_utils import (
|
|
add_hadamard_transform_for_spinquant,
|
|
)
|
|
|
|
add_hadamard_transform_for_spinquant(model)
|
|
else:
|
|
raise NotImplementedError("Currently int4 and fp8 are the only supported quantization methods.")
|
|
else:
|
|
if device == "cuda":
|
|
if torch.cuda.is_bf16_supported():
|
|
torch.set_default_tensor_type(torch.cuda.BFloat16Tensor)
|
|
else:
|
|
torch.set_default_tensor_type(torch.cuda.HalfTensor)
|
|
else:
|
|
torch.set_default_device(device)
|
|
if device == "xpu" and torch.xpu.is_bf16_supported():
|
|
torch.set_default_dtype(torch.bfloat16)
|
|
else:
|
|
torch.set_default_dtype(torch.half)
|
|
if model_args.vision_chunk_size > 0:
|
|
model = CrossAttentionTransformer(model_args)
|
|
model.setup_cache(model_args.max_batch_size, torch.bfloat16)
|
|
else:
|
|
model = Transformer(model_args)
|
|
model.load_state_dict(state_dict, strict=False)
|
|
|
|
model.to(device)
|
|
|
|
log.info(f"Loaded in {time.time() - start_time:.2f} seconds")
|
|
return Llama3(model, tokenizer, model_args, llama_model_id)
|
|
|
|
def __init__(
|
|
self,
|
|
model: Transformer,
|
|
tokenizer: Tokenizer,
|
|
args: ModelArgs,
|
|
llama_model: str,
|
|
):
|
|
self.args = args
|
|
self.model = model
|
|
self.tokenizer = tokenizer
|
|
self.formatter = ChatFormat(tokenizer)
|
|
self.llama_model = llama_model
|
|
|
|
@torch.inference_mode()
|
|
def generate(
|
|
self,
|
|
model_input: LLMInput,
|
|
max_gen_len: int,
|
|
temperature: float = 0.6,
|
|
top_p: float = 0.9,
|
|
logprobs: bool = False,
|
|
echo: bool = False,
|
|
print_input_tokens: bool = False,
|
|
logits_processor: Optional[Callable[[torch.Tensor, torch.Tensor], torch.Tensor]] = None,
|
|
) -> Generator:
|
|
params = self.model.params
|
|
|
|
if print_input_tokens:
|
|
input_tokens = [self.formatter.vision_token if t == 128256 else t for t in model_input.tokens]
|
|
log.info("Input to model -> " + self.tokenizer.decode(input_tokens))
|
|
prompt_tokens = [model_input.tokens]
|
|
|
|
bsz = 1
|
|
assert bsz <= params.max_batch_size, (bsz, params.max_batch_size)
|
|
|
|
min_prompt_len = min(len(t) for t in prompt_tokens)
|
|
max_prompt_len = max(len(t) for t in prompt_tokens)
|
|
|
|
if max_prompt_len >= params.max_seq_len:
|
|
log.error(f"Out of token budget {max_prompt_len} vs {params.max_seq_len}")
|
|
return
|
|
|
|
total_len = min(max_gen_len + max_prompt_len, params.max_seq_len)
|
|
|
|
is_vision = isinstance(self.model, CrossAttentionTransformer)
|
|
if is_vision:
|
|
images = model_input.vision.images if model_input.vision is not None else []
|
|
mask = model_input.vision.mask if model_input.vision is not None else []
|
|
|
|
# the method works for bsz > 1 so add a batch dimension
|
|
xattn_caches, cross_attention_masks, full_text_row_masked_out_mask = self.model.compute_vision_tokens_masks(
|
|
batch_images=[images],
|
|
batch_masks=[mask],
|
|
total_len=total_len,
|
|
)
|
|
|
|
pad_id = self.tokenizer.pad_id
|
|
tokens = torch.full((bsz, total_len), pad_id, dtype=torch.long)
|
|
for k, t in enumerate(prompt_tokens):
|
|
tokens[k, : len(t)] = torch.tensor(t, dtype=torch.long)
|
|
if logprobs:
|
|
token_logprobs = torch.zeros_like(tokens)
|
|
|
|
prev_pos = 0
|
|
eos_reached = torch.tensor([False] * bsz)
|
|
input_text_mask = tokens != pad_id
|
|
if min_prompt_len == total_len:
|
|
# TODO(ashwin): unify this branch with the one below and figure out multimodal crap
|
|
logits = self.model.forward(tokens, prev_pos)
|
|
token_logprobs = -F.cross_entropy(
|
|
input=logits.transpose(1, 2),
|
|
target=tokens,
|
|
reduction="none",
|
|
ignore_index=pad_id,
|
|
)
|
|
|
|
stop_tokens = torch.tensor(self.tokenizer.stop_tokens)
|
|
for cur_pos in range(min_prompt_len, total_len):
|
|
if is_vision:
|
|
position_ids = torch.arange(prev_pos, cur_pos, dtype=torch.long)
|
|
logits = self.model.forward(
|
|
position_ids,
|
|
tokens,
|
|
cross_attention_masks,
|
|
full_text_row_masked_out_mask,
|
|
xattn_caches,
|
|
)
|
|
else:
|
|
logits = self.model.forward(tokens[:, prev_pos:cur_pos], prev_pos)
|
|
|
|
if logits_processor is not None:
|
|
logits = logits_processor(tokens[:, :cur_pos], logits)
|
|
|
|
if temperature > 0:
|
|
probs = torch.softmax(logits[:, -1] / temperature, dim=-1)
|
|
next_token = sample_top_p(probs, top_p)
|
|
else:
|
|
next_token = torch.argmax(logits[:, -1], dim=-1)
|
|
|
|
next_token = next_token.reshape(-1)
|
|
# only replace token if prompt has already been generated
|
|
next_token = torch.where(input_text_mask[:, cur_pos], tokens[:, cur_pos], next_token)
|
|
tokens[:, cur_pos] = next_token
|
|
|
|
target = tokens[:, prev_pos + 1 : cur_pos + 1]
|
|
if is_vision:
|
|
# the logits space (num_classes) is designed to never contain a media_token
|
|
# however our input token stream does contain them. we need to nuke them here
|
|
# or else the CUDA kernels will crash with an illegal memory access
|
|
vision_tokens = [self.tokenizer.special_tokens["<|image|>"], 128256]
|
|
masks = [target.eq(t) for t in vision_tokens]
|
|
if len(masks) > 1:
|
|
mask = torch.logical_or(*masks)
|
|
else:
|
|
mask = masks[0]
|
|
target[mask] = 0
|
|
|
|
if logprobs:
|
|
token_logprobs[:, prev_pos + 1 : cur_pos + 1] = -F.cross_entropy(
|
|
input=logits.transpose(1, 2),
|
|
target=tokens[:, prev_pos + 1 : cur_pos + 1],
|
|
reduction="none",
|
|
ignore_index=pad_id,
|
|
)
|
|
eos_reached |= (~input_text_mask[:, cur_pos]) & (torch.isin(next_token, stop_tokens))
|
|
yield TokenResult(
|
|
token=next_token[0].item(),
|
|
text=self.tokenizer.decode(next_token.tolist()),
|
|
logprobs=(token_logprobs[:, cur_pos : cur_pos + 1][0].tolist() if logprobs else None),
|
|
)
|
|
|
|
prev_pos = cur_pos
|
|
if all(eos_reached):
|
|
break
|
|
|
|
|
|
def sample_top_p(probs, p):
|
|
"""
|
|
Perform top-p (nucleus) sampling on a probability distribution.
|
|
|
|
Args:
|
|
probs (torch.Tensor): Probability distribution tensor.
|
|
p (float): Probability threshold for top-p sampling.
|
|
|
|
Returns:
|
|
torch.Tensor: Sampled token indices.
|
|
|
|
Note:
|
|
Top-p sampling selects the smallest set of tokens whose cumulative probability mass
|
|
exceeds the threshold p. The distribution is renormalized based on the selected tokens.
|
|
"""
|
|
probs_sort, probs_idx = torch.sort(probs, dim=-1, descending=True)
|
|
probs_sum = torch.cumsum(probs_sort, dim=-1)
|
|
mask = probs_sum - probs_sort > p
|
|
probs_sort[mask] = 0.0
|
|
probs_sort.div_(probs_sort.sum(dim=-1, keepdim=True))
|
|
next_token = torch.multinomial(probs_sort, num_samples=1)
|
|
next_token = torch.gather(probs_idx, -1, next_token)
|
|
return next_token
|