Composable building blocks to build Llama Apps
Find a file
Sébastien Han c91548fe07
build(container): misc improvements (#1291)
# What does this PR do?

See individual commit messages.

[//]: # (If resolving an issue, uncomment and update the line below)
[//]: # (Closes #[issue-number])

## Test Plan

Apply this diff:

```
diff --git a/llama_stack/templates/ollama/build.yaml b/llama_stack/templates/ollama/build.yaml
index da33b8d5..4a702f6f 100644
--- a/llama_stack/templates/ollama/build.yaml
+++ b/llama_stack/templates/ollama/build.yaml
@@ -28,5 +28,5 @@ distribution_spec:
     - remote::tavily-search
     - inline::code-interpreter
     - inline::rag-runtime
-    - remote::model-context-protocol
+  container_image: "registry.access.redhat.com/ubi9"
 image_type: conda
```

Then run:

```
CONTAINER_BINARY=podman llama stack build --template ollama --image-type container --image-name registry.access.redhat.com/ubi9
Containerfile created successfully in /var/folders/mq/rnm5w_7s2d3fxmtkx02knvhm0000gn/T/tmp.I7E5V6zbVI/Containerfile

FROM registry.access.redhat.com/ubi9
WORKDIR /app

RUN dnf -y update && dnf install -y iputils net-tools wget     vim-minimal python3.11 python3.11-pip python3.11-wheel     python3.11-setuptools && ln -s /bin/pip3.11 /bin/pip && ln -s /bin/python3.11 /bin/python && dnf clean all

ENV UV_SYSTEM_PYTHON=1
RUN pip install uv
RUN uv pip install --no-cache ollama nltk opentelemetry-sdk aiosqlite matplotlib datasets sqlite-vec scipy chromadb-client psycopg2-binary numpy scikit-learn openai redis pandas tqdm blobfile sentencepiece aiohttp requests pillow pymongo transformers autoevals opentelemetry-exporter-otlp-proto-http pypdf chardet aiosqlite fastapi fire httpx uvicorn
RUN uv pip install --no-cache llama-stack
RUN pip uninstall -y uv
ENTRYPOINT ["python", "-m", "llama_stack.distribution.server.server", "--template", "ollama"]

# Allows running as non-root user
RUN mkdir -p /.llama /.cache

RUN chmod -R g+rw /app /.llama /.cache

PWD: /Users/leseb/Documents/AI/llama-stack
Containerfile: /var/folders/mq/rnm5w_7s2d3fxmtkx02knvhm0000gn/T/tmp.I7E5V6zbVI/Containerfile
+ podman build --platform linux/arm64 -t distribution-ollama:0.1.4 -f /var/folders/mq/rnm5w_7s2d3fxmtkx02knvhm0000gn/T/tmp.I7E5V6zbVI/Containerfile . --progress=plain
STEP 1/11: FROM registry.access.redhat.com/ubi9
STEP 2/11: WORKDIR /app
--> Using cache d73dafd4caddd75bc29242a9031258fea759dc571c5bb53a64b5e6d86b3b1335
--> d73dafd4cadd
STEP 3/11: RUN dnf -y update && dnf install -y iputils net-tools wget     vim-minimal python3.11 python3.11-pip python3.11-wheel     python3.11-setuptools && ln -s /bin/pip3.11 /bin/pip && ln -s /bin/python3.11 /bin/python && dnf clean all
--> Using cache b74ad682db149771612a3ea1e4796e0760ab8a4e07c26ad672b46a86d38178c2
--> b74ad682db14
STEP 4/11: ENV UV_SYSTEM_PYTHON=1
--> Using cache 0812a05e6576506aa2fe646cbf239d0cb504cac30a50cb5cf4dc88e49039466d
--> 0812a05e6576
STEP 5/11: RUN pip install uv
--> Using cache a0ce1705f87e52f70f6eb34e66f67b68ebc7c1a073f4d2a664b189cfa89a4e88
--> a0ce1705f87e
STEP 6/11: RUN uv pip install --no-cache ollama nltk opentelemetry-sdk aiosqlite matplotlib datasets sqlite-vec scipy chromadb-client psycopg2-binary numpy scikit-learn openai redis pandas tqdm blobfile sentencepiece aiohttp requests pillow pymongo transformers autoevals opentelemetry-exporter-otlp-proto-http pypdf chardet aiosqlite fastapi fire httpx uvicorn
Using Python 3.11.9 environment at: /usr
Resolved 107 packages in 1.78s
Downloading kiwisolver (1.4MiB)
Downloading aiohttp (1.6MiB)
Downloading grpcio (5.4MiB)
Downloading nltk (1.4MiB)
Downloading transformers (9.5MiB)
Downloading pydantic-core (1.7MiB)
Downloading lxml (4.6MiB)
Downloading psycopg2-binary (2.7MiB)
Downloading scipy (33.8MiB)
Downloading scikit-learn (12.0MiB)
Downloading tokenizers (2.8MiB)
Downloading fonttools (4.6MiB)
Downloading pymongo (1.3MiB)
Downloading rapidfuzz (1.4MiB)
Downloading sentencepiece (1.2MiB)
Downloading pyarrow (38.7MiB)
Downloading matplotlib (8.1MiB)
Downloading pycryptodomex (2.1MiB)
Downloading pillow (4.2MiB)
Downloading pandas (14.9MiB)
Downloading numpy (13.6MiB)
   Building fire==0.7.0
 Downloaded sentencepiece
 Downloaded kiwisolver
 Downloaded pymongo
 Downloaded rapidfuzz
 Downloaded nltk
 Downloaded aiohttp
      Built fire==0.7.0
 Downloaded pydantic-core
 Downloaded pycryptodomex
 Downloaded psycopg2-binary
 Downloaded tokenizers
 Downloaded pillow
 Downloaded lxml
 Downloaded fonttools
 Downloaded grpcio
 Downloaded matplotlib
 Downloaded transformers
 Downloaded scikit-learn
 Downloaded numpy
 Downloaded pandas
 Downloaded scipy
 Downloaded pyarrow
Prepared 107 packages in 3.03s
Installed 107 packages in 62ms
 + aiohappyeyeballs==2.4.6
 + aiohttp==3.11.13
 + aiosignal==1.3.2
 + aiosqlite==0.21.0
 + annotated-types==0.7.0
 + anyio==4.8.0
 + attrs==25.1.0
 + autoevals==0.0.120
 + backoff==2.2.1
 + blobfile==3.0.0
 + braintrust-core==0.0.58
 + certifi==2025.1.31
 + chardet==5.2.0
 + charset-normalizer==3.4.1
 + chevron==0.14.0
 + chromadb-client==0.6.3
 + click==8.1.8
 + contourpy==1.3.1
 + cycler==0.12.1
 + datasets==3.3.2
 + deprecated==1.2.18
 + dill==0.3.8
 + distro==1.9.0
 + dnspython==2.7.0
 + fastapi==0.115.8
 + filelock==3.17.0
 + fire==0.7.0
 + fonttools==4.56.0
 + frozenlist==1.5.0
 + fsspec==2024.12.0
 + googleapis-common-protos==1.68.0
 + grpcio==1.70.0
 + h11==0.14.0
 + httpcore==1.0.7
 + httpx==0.28.1
 + huggingface-hub==0.29.1
 + idna==3.10
 + importlib-metadata==8.5.0
 + jiter==0.8.2
 + joblib==1.4.2
 + jsonschema==4.23.0
 + jsonschema-specifications==2024.10.1
 + kiwisolver==1.4.8
 + levenshtein==0.26.1
 + lxml==5.3.1
 + matplotlib==3.10.0
 + monotonic==1.6
 + multidict==6.1.0
 + multiprocess==0.70.16
 + nltk==3.9.1
 + numpy==1.26.4
 + ollama==0.4.7
 + openai==1.64.0
 + opentelemetry-api==1.30.0
 + opentelemetry-exporter-otlp-proto-common==1.30.0
 + opentelemetry-exporter-otlp-proto-grpc==1.30.0
 + opentelemetry-exporter-otlp-proto-http==1.30.0
 + opentelemetry-proto==1.30.0
 + opentelemetry-sdk==1.30.0
 + opentelemetry-semantic-conventions==0.51b0
 + orjson==3.10.15
 + overrides==7.7.0
 + packaging==24.2
 + pandas==2.2.3
 + pillow==11.1.0
 + posthog==3.16.0
 + propcache==0.3.0
 + protobuf==5.29.3
 + psycopg2-binary==2.9.10
 + pyarrow==19.0.1
 + pycryptodomex==3.21.0
 + pydantic==2.10.6
 + pydantic-core==2.27.2
 + pymongo==4.11.1
 + pyparsing==3.2.1
 + pypdf==5.3.0
 + python-dateutil==2.9.0.post0
 + pytz==2025.1
 + pyyaml==6.0.2
 + rapidfuzz==3.12.1
 + redis==5.2.1
 + referencing==0.36.2
 + regex==2024.11.6
 + requests==2.32.3
 + rpds-py==0.23.1
 + safetensors==0.5.3
 + scikit-learn==1.6.1
 + scipy==1.15.2
 + sentencepiece==0.2.0
 + six==1.17.0
 + sniffio==1.3.1
 + sqlite-vec==0.1.6
 + starlette==0.45.3
 + tenacity==9.0.0
 + termcolor==2.5.0
 + threadpoolctl==3.5.0
 + tokenizers==0.21.0
 + tqdm==4.67.1
 + transformers==4.49.0
 + typing-extensions==4.12.2
 + tzdata==2025.1
 + urllib3==2.3.0
 + uvicorn==0.34.0
 + wrapt==1.17.2
 + xxhash==3.5.0
 + yarl==1.18.3
 + zipp==3.21.0
--> 5b5b823605a1
STEP 7/11: RUN uv pip install --no-cache llama-stack
Using Python 3.11.9 environment at: /usr
Resolved 55 packages in 1.08s
Downloading setuptools (1.2MiB)
Downloading pygments (1.2MiB)
Downloading llama-models (1.5MiB)
Downloading tiktoken (1.1MiB)
 Downloaded tiktoken
 Downloaded llama-models
 Downloaded pygments
 Downloaded setuptools
Prepared 15 packages in 402ms
Installed 15 packages in 15ms
 + jinja2==3.1.5
 + llama-models==0.1.4
 + llama-stack==0.1.4
 + llama-stack-client==0.1.4
 + markdown-it-py==3.0.0
 + markupsafe==3.0.2
 + mdurl==0.1.2
 + prompt-toolkit==3.0.50
 + pyaml==25.1.0
 + pygments==2.19.1
 + python-dotenv==1.0.1
 + rich==13.9.4
 + setuptools==75.8.2
 + tiktoken==0.9.0
 + wcwidth==0.2.13
--> 38a037443807
STEP 8/11: RUN pip uninstall -y uv
Found existing installation: uv 0.6.3
Uninstalling uv-0.6.3:
  Successfully uninstalled uv-0.6.3
WARNING: Running pip as the 'root' user can result in broken permissions and conflicting behaviour with the system package manager. It is recommended to use a virtual environment instead: https://pip.pypa.io/warnings/venv
--> 54f749dc5ece
STEP 9/11: ENTRYPOINT ["python", "-m", "llama_stack.distribution.server.server", "--template", "ollama"]
--> 481c138b1982
STEP 10/11: RUN mkdir -p /.llama /.cache
--> 0fc174f014a8
STEP 11/11: RUN chmod -R g+rw /app /.llama /.cache
COMMIT distribution-ollama:0.1.4
--> d41b4ab4b136
Successfully tagged localhost/distribution-ollama:0.1.4
d41b4ab4b1363bfbaf6239e6f313bcb37873ef4b5f2fd816a4ee55acf2ac54d3
+ set +x
Success!
Build Successful!
```

UBI9 container successfully builds.

Run the container:

```
podman run d41b4ab4b1363bfbaf6239e6f313bcb37873ef4b5f2fd816a4ee55acf2ac54d3 --env INFERENCE_MODEL=meta-llama/Llama-3.2-3B-Instruct
INFO 2025-02-27 13:08:03,666 llama_stack.distribution.resolver:213: Resolved 30 providers
INFO 2025-02-27 13:08:03,666 llama_stack.distribution.resolver:215:  inner-inference => ollama
INFO 2025-02-27 13:08:03,666 llama_stack.distribution.resolver:215:  models => __routing_table__
INFO 2025-02-27 13:08:03,666 llama_stack.distribution.resolver:215:  inference => __autorouted__
INFO 2025-02-27 13:08:03,666 llama_stack.distribution.resolver:215:  inner-vector_io => sqlite-vec
INFO 2025-02-27 13:08:03,666 llama_stack.distribution.resolver:215:  inner-safety => llama-guard
INFO 2025-02-27 13:08:03,666 llama_stack.distribution.resolver:215:  shields => __routing_table__
INFO 2025-02-27 13:08:03,666 llama_stack.distribution.resolver:215:  safety => __autorouted__
INFO 2025-02-27 13:08:03,666 llama_stack.distribution.resolver:215:  vector_dbs => __routing_table__
INFO 2025-02-27 13:08:03,666 llama_stack.distribution.resolver:215:  vector_io => __autorouted__
INFO 2025-02-27 13:08:03,666 llama_stack.distribution.resolver:215:  inner-tool_runtime => brave-search
INFO 2025-02-27 13:08:03,666 llama_stack.distribution.resolver:215:  inner-tool_runtime => tavily-search
```


[//]: # (## Documentation)

---------

Signed-off-by: Sébastien Han <seb@redhat.com>
2025-02-28 10:01:52 -08:00
.github ci: improve GitHub Actions workflow for website builds (#1151) 2025-02-20 21:37:37 -08:00
distributions fix: precommits ugh why wont they run correctly because they dont have the right dependencies 2025-02-27 15:02:04 -08:00
docs docs: Add link to distributions guide in quick start guide (#1326) 2025-02-28 09:18:02 -08:00
llama_stack build(container): misc improvements (#1291) 2025-02-28 10:01:52 -08:00
rfcs docs: Fix url to the llama-stack-spec yaml/html files (#1081) 2025-02-13 12:39:26 -08:00
tests/client-sdk chore(lint): update Ruff ignores for project conventions and maintainability (#1184) 2025-02-28 09:36:49 -08:00
.gitignore github: ignore non-hidden python virtual environments (#939) 2025-02-03 11:53:05 -08:00
.gitmodules chore: removed executorch submodule (#1265) 2025-02-25 21:57:21 -08:00
.pre-commit-config.yaml chore: upgrade uv pre-commit version, uv-sync -> uv-lock (#1284) 2025-02-26 14:57:48 -08:00
.python-version build: hint on Python version for uv venv (#1172) 2025-02-25 10:37:45 -05:00
.readthedocs.yaml first version of readthedocs (#278) 2024-10-22 10:15:58 +05:30
CODE_OF_CONDUCT.md Initial commit 2024-07-23 08:32:33 -07:00
CONTRIBUTING.md build: Add dotenv file for running tests with uv (#1251) 2025-02-27 16:42:55 -08:00
LICENSE Update LICENSE (#47) 2024-08-29 07:39:50 -07:00
MANIFEST.in feat: completing text /chat-completion and /completion tests (#1223) 2025-02-25 11:37:04 -08:00
pyproject.toml chore(lint): update Ruff ignores for project conventions and maintainability (#1184) 2025-02-28 09:36:49 -08:00
README.md docs: Simplify installation guide with uv (#1196) 2025-02-20 21:05:47 -08:00
requirements.txt fix: pre-commit updates (#1243) 2025-02-24 17:20:29 -08:00
SECURITY.md Create SECURITY.md 2024-10-08 13:30:40 -04:00
uv.lock fix: run uv-sync manually. locally pre-commit is not triggering 2025-02-26 13:54:08 -08:00

Llama Stack

PyPI version PyPI - Downloads License Discord

Quick Start | Documentation | Colab Notebook

Llama Stack standardizes the core building blocks that simplify AI application development. It codifies best practices across the Llama ecosystem. More specifically, it provides

  • Unified API layer for Inference, RAG, Agents, Tools, Safety, Evals, and Telemetry.
  • Plugin architecture to support the rich ecosystem of different API implementations in various environments, including local development, on-premises, cloud, and mobile.
  • Prepackaged verified distributions which offer a one-stop solution for developers to get started quickly and reliably in any environment.
  • Multiple developer interfaces like CLI and SDKs for Python, Typescript, iOS, and Android.
  • Standalone applications as examples for how to build production-grade AI applications with Llama Stack.
Llama Stack

Llama Stack Benefits

  • Flexible Options: Developers can choose their preferred infrastructure without changing APIs and enjoy flexible deployment choices.
  • Consistent Experience: With its unified APIs, Llama Stack makes it easier to build, test, and deploy AI applications with consistent application behavior.
  • Robust Ecosystem: Llama Stack is already integrated with distribution partners (cloud providers, hardware vendors, and AI-focused companies) that offer tailored infrastructure, software, and services for deploying Llama models.

By reducing friction and complexity, Llama Stack empowers developers to focus on what they do best: building transformative generative AI applications.

API Providers

Here is a list of the various API providers and available distributions that can help developers get started easily with Llama Stack.

API Provider Builder Environments Agents Inference Memory Safety Telemetry
Meta Reference Single Node
SambaNova Hosted
Cerebras Hosted
Fireworks Hosted
AWS Bedrock Hosted
Together Hosted
Groq Hosted
Ollama Single Node
TGI Hosted and Single Node
NVIDIA NIM Hosted and Single Node
Chroma Single Node
PG Vector Single Node
PyTorch ExecuTorch On-device iOS
vLLM Hosted and Single Node

Distributions

A Llama Stack Distribution (or "distro") is a pre-configured bundle of provider implementations for each API component. Distributions make it easy to get started with a specific deployment scenario - you can begin with a local development setup (eg. ollama) and seamlessly transition to production (eg. Fireworks) without changing your application code. Here are some of the distributions we support:

Distribution Llama Stack Docker Start This Distribution
Meta Reference llamastack/distribution-meta-reference-gpu Guide
Meta Reference Quantized llamastack/distribution-meta-reference-quantized-gpu Guide
SambaNova llamastack/distribution-sambanova Guide
Cerebras llamastack/distribution-cerebras Guide
Ollama llamastack/distribution-ollama Guide
TGI llamastack/distribution-tgi Guide
Together llamastack/distribution-together Guide
Fireworks llamastack/distribution-fireworks Guide
vLLM llamastack/distribution-remote-vllm Guide

Installation

You have two ways to install this repository:

  • Install as a package: You can install the repository directly from PyPI by running the following command:

    pip install llama-stack
    
  • Install from source: If you prefer to install from the source code, we recommend using uv. Then, run the following commands:

     git clone git@github.com:meta-llama/llama-stack.git
     cd llama-stack
    
     uv sync
     uv pip install -e .
    

Documentation

Please checkout our Documentation page for more details.

Llama Stack Client SDKs

Language Client SDK Package
Python llama-stack-client-python PyPI version
Swift llama-stack-client-swift Swift Package Index
Typescript llama-stack-client-typescript NPM version
Kotlin llama-stack-client-kotlin Maven version

Check out our client SDKs for connecting to a Llama Stack server in your preferred language, you can choose from python, typescript, swift, and kotlin programming languages to quickly build your applications.

You can find more example scripts with client SDKs to talk with the Llama Stack server in our llama-stack-apps repo.