forked from phoenix-oss/llama-stack-mirror
See https://github.com/meta-llama/llama-stack/issues/827 for the broader design. This PR finishes off all the stragglers and migrates everything to the new naming.
175 lines
5.8 KiB
Python
175 lines
5.8 KiB
Python
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
|
# All rights reserved.
|
|
#
|
|
# This source code is licensed under the terms described in the LICENSE file in
|
|
# the root directory of this source tree.
|
|
import asyncio
|
|
import json
|
|
import logging
|
|
from typing import Any, Dict, List, Optional, Union
|
|
from urllib.parse import urlparse
|
|
|
|
import chromadb
|
|
from numpy.typing import NDArray
|
|
|
|
from llama_stack.apis.inference import InterleavedContent
|
|
from llama_stack.apis.vector_dbs import VectorDB
|
|
from llama_stack.apis.vector_io import Chunk, QueryChunksResponse, VectorIO
|
|
from llama_stack.providers.datatypes import Api, VectorDBsProtocolPrivate
|
|
from llama_stack.providers.inline.vector_io.chroma import ChromaInlineImplConfig
|
|
from llama_stack.providers.utils.memory.vector_store import (
|
|
EmbeddingIndex,
|
|
VectorDBWithIndex,
|
|
)
|
|
from .config import ChromaRemoteImplConfig
|
|
|
|
log = logging.getLogger(__name__)
|
|
|
|
|
|
ChromaClientType = Union[chromadb.AsyncHttpClient, chromadb.PersistentClient]
|
|
|
|
|
|
# this is a helper to allow us to use async and non-async chroma clients interchangeably
|
|
async def maybe_await(result):
|
|
if asyncio.iscoroutine(result):
|
|
return await result
|
|
return result
|
|
|
|
|
|
class ChromaIndex(EmbeddingIndex):
|
|
def __init__(self, client: ChromaClientType, collection):
|
|
self.client = client
|
|
self.collection = collection
|
|
|
|
async def add_chunks(self, chunks: List[Chunk], embeddings: NDArray):
|
|
assert len(chunks) == len(
|
|
embeddings
|
|
), f"Chunk length {len(chunks)} does not match embedding length {len(embeddings)}"
|
|
|
|
await maybe_await(
|
|
self.collection.add(
|
|
documents=[chunk.model_dump_json() for chunk in chunks],
|
|
embeddings=embeddings,
|
|
ids=[f"{c.document_id}:chunk-{i}" for i, c in enumerate(chunks)],
|
|
)
|
|
)
|
|
|
|
async def query(
|
|
self, embedding: NDArray, k: int, score_threshold: float
|
|
) -> QueryChunksResponse:
|
|
results = await maybe_await(
|
|
self.collection.query(
|
|
query_embeddings=[embedding.tolist()],
|
|
n_results=k,
|
|
include=["documents", "distances"],
|
|
)
|
|
)
|
|
distances = results["distances"][0]
|
|
documents = results["documents"][0]
|
|
|
|
chunks = []
|
|
scores = []
|
|
for dist, doc in zip(distances, documents):
|
|
try:
|
|
doc = json.loads(doc)
|
|
chunk = Chunk(**doc)
|
|
except Exception:
|
|
log.exception(f"Failed to parse document: {doc}")
|
|
continue
|
|
|
|
chunks.append(chunk)
|
|
scores.append(1.0 / float(dist))
|
|
|
|
return QueryChunksResponse(chunks=chunks, scores=scores)
|
|
|
|
async def delete(self):
|
|
await maybe_await(self.client.delete_collection(self.collection.name))
|
|
|
|
|
|
class ChromaVectorIOAdapter(VectorIO, VectorDBsProtocolPrivate):
|
|
def __init__(
|
|
self,
|
|
config: Union[ChromaRemoteImplConfig, ChromaInlineImplConfig],
|
|
inference_api: Api.inference,
|
|
) -> None:
|
|
log.info(f"Initializing ChromaVectorIOAdapter with url: {config}")
|
|
self.config = config
|
|
self.inference_api = inference_api
|
|
|
|
self.client = None
|
|
self.cache = {}
|
|
|
|
async def initialize(self) -> None:
|
|
if isinstance(self.config, ChromaRemoteImplConfig):
|
|
log.info(f"Connecting to Chroma server at: {self.config.url}")
|
|
url = self.config.url.rstrip("/")
|
|
parsed = urlparse(url)
|
|
|
|
if parsed.path and parsed.path != "/":
|
|
raise ValueError("URL should not contain a path")
|
|
|
|
self.client = await chromadb.AsyncHttpClient(
|
|
host=parsed.hostname, port=parsed.port
|
|
)
|
|
else:
|
|
log.info(f"Connecting to Chroma local db at: {self.config.db_path}")
|
|
self.client = chromadb.PersistentClient(path=self.config.db_path)
|
|
|
|
async def shutdown(self) -> None:
|
|
pass
|
|
|
|
async def register_vector_db(
|
|
self,
|
|
vector_db: VectorDB,
|
|
) -> None:
|
|
collection = await maybe_await(
|
|
self.client.get_or_create_collection(
|
|
name=vector_db.identifier,
|
|
metadata={"vector_db": vector_db.model_dump_json()},
|
|
)
|
|
)
|
|
self.cache[vector_db.identifier] = VectorDBWithIndex(
|
|
vector_db, ChromaIndex(self.client, collection), self.inference_api
|
|
)
|
|
|
|
async def unregister_vector_db(self, vector_db_id: str) -> None:
|
|
await self.cache[vector_db_id].index.delete()
|
|
del self.cache[vector_db_id]
|
|
|
|
async def insert_chunks(
|
|
self,
|
|
vector_db_id: str,
|
|
chunks: List[Chunk],
|
|
embeddings: NDArray,
|
|
) -> None:
|
|
index = await self._get_and_cache_vector_db_index(vector_db_id)
|
|
|
|
await index.insert_chunks(chunks, embeddings)
|
|
|
|
async def query_chunks(
|
|
self,
|
|
vector_db_id: str,
|
|
query: InterleavedContent,
|
|
params: Optional[Dict[str, Any]] = None,
|
|
) -> QueryChunksResponse:
|
|
index = await self._get_and_cache_vector_db_index(vector_db_id)
|
|
|
|
return await index.query_chunks(query, params)
|
|
|
|
async def _get_and_cache_vector_db_index(
|
|
self, vector_db_id: str
|
|
) -> VectorDBWithIndex:
|
|
if vector_db_id in self.cache:
|
|
return self.cache[vector_db_id]
|
|
|
|
vector_db = await self.vector_db_store.get_vector_db(vector_db_id)
|
|
if not vector_db:
|
|
raise ValueError(f"Vector DB {vector_db_id} not found in Llama Stack")
|
|
collection = await maybe_await(self.client.get_collection(vector_db_id))
|
|
if not collection:
|
|
raise ValueError(f"Vector DB {vector_db_id} not found in Chroma")
|
|
index = VectorDBWithIndex(
|
|
vector_db, ChromaIndex(self.client, collection), self.inference_api
|
|
)
|
|
self.cache[vector_db_id] = index
|
|
return index
|