forked from phoenix-oss/llama-stack-mirror
# What does this PR do? - add some docs to OpenAPI for agents/eval/scoring/datasetio [//]: # (If resolving an issue, uncomment and update the line below) [//]: # (Closes #[issue-number]) ## Test Plan - read [//]: # (## Documentation)
78 lines
2.2 KiB
Python
78 lines
2.2 KiB
Python
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
|
# All rights reserved.
|
|
#
|
|
# This source code is licensed under the terms described in the LICENSE file in
|
|
# the root directory of this source tree.
|
|
|
|
from typing import Any, Dict, List, Optional, Protocol, runtime_checkable
|
|
|
|
from pydantic import BaseModel
|
|
|
|
from llama_stack.apis.scoring_functions import ScoringFn, ScoringFnParams
|
|
from llama_stack.schema_utils import json_schema_type, webmethod
|
|
|
|
# mapping of metric to value
|
|
ScoringResultRow = Dict[str, Any]
|
|
|
|
|
|
@json_schema_type
|
|
class ScoringResult(BaseModel):
|
|
"""
|
|
A scoring result for a single row.
|
|
|
|
:param score_rows: The scoring result for each row. Each row is a map of column name to value.
|
|
:param aggregated_results: Map of metric name to aggregated value
|
|
"""
|
|
|
|
score_rows: List[ScoringResultRow]
|
|
# aggregated metrics to value
|
|
aggregated_results: Dict[str, Any]
|
|
|
|
|
|
@json_schema_type
|
|
class ScoreBatchResponse(BaseModel):
|
|
dataset_id: Optional[str] = None
|
|
results: Dict[str, ScoringResult]
|
|
|
|
|
|
@json_schema_type
|
|
class ScoreResponse(BaseModel):
|
|
"""
|
|
The response from scoring.
|
|
|
|
:param results: A map of scoring function name to ScoringResult.
|
|
"""
|
|
|
|
# each key in the dict is a scoring function name
|
|
results: Dict[str, ScoringResult]
|
|
|
|
|
|
class ScoringFunctionStore(Protocol):
|
|
def get_scoring_function(self, scoring_fn_id: str) -> ScoringFn: ...
|
|
|
|
|
|
@runtime_checkable
|
|
class Scoring(Protocol):
|
|
scoring_function_store: ScoringFunctionStore
|
|
|
|
@webmethod(route="/scoring/score-batch", method="POST")
|
|
async def score_batch(
|
|
self,
|
|
dataset_id: str,
|
|
scoring_functions: Dict[str, Optional[ScoringFnParams]],
|
|
save_results_dataset: bool = False,
|
|
) -> ScoreBatchResponse: ...
|
|
|
|
@webmethod(route="/scoring/score", method="POST")
|
|
async def score(
|
|
self,
|
|
input_rows: List[Dict[str, Any]],
|
|
scoring_functions: Dict[str, Optional[ScoringFnParams]],
|
|
) -> ScoreResponse:
|
|
"""Score a list of rows.
|
|
|
|
:param input_rows: The rows to score.
|
|
:param scoring_functions: The scoring functions to use for the scoring.
|
|
:return: ScoreResponse object containing rows and aggregated results
|
|
"""
|
|
...
|