llama-stack/llama_stack/apis/scoring/scoring.py
Xi Yan cb84034567
[Evals API][3/n] scoring_functions / scoring meta-reference implementations (#296)
* wip

* dataset validation

* test_scoring

* cleanup

* clean up test

* comments

* error checking

* dataset client

* test client:

* datasetio client

* clean up

* basic scoring function works

* scorer wip

* equality scorer

* score batch impl

* score batch

* update scoring test

* refactor

* validate scorer input

* address comments

* add all rows scores to ScoringResult

* bugfix

* scoring function def rename
2024-10-24 14:52:30 -07:00

58 lines
1.6 KiB
Python

# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from typing import Any, Dict, List, Protocol, runtime_checkable
from llama_models.schema_utils import json_schema_type, webmethod
from pydantic import BaseModel
from llama_models.llama3.api.datatypes import * # noqa: F403
from llama_stack.apis.scoring_functions import * # noqa: F403
# mapping of metric to value
ScoringResultRow = Dict[str, Any]
@json_schema_type
class ScoringResult(BaseModel):
score_rows: List[ScoringResultRow]
# aggregated metrics to value
aggregated_results: Dict[str, Any]
@json_schema_type
class ScoreBatchResponse(BaseModel):
dataset_id: Optional[str] = None
results: Dict[str, ScoringResult]
@json_schema_type
class ScoreResponse(BaseModel):
# each key in the dict is a scoring function name
results: Dict[str, ScoringResult]
class ScoringFunctionStore(Protocol):
def get_scoring_function(self, name: str) -> ScoringFunctionDefWithProvider: ...
@runtime_checkable
class Scoring(Protocol):
scoring_function_store: ScoringFunctionStore
@webmethod(route="/scoring/score_batch")
async def score_batch(
self,
dataset_id: str,
scoring_functions: List[str],
save_results_dataset: bool = False,
) -> ScoreBatchResponse: ...
@webmethod(route="/scoring/score")
async def score(
self, input_rows: List[Dict[str, Any]], scoring_functions: List[str]
) -> ScoreResponse: ...