forked from phoenix-oss/llama-stack-mirror
There should be a choke-point for llama3.api imports -- this is the prompt adapter. Creating a ChatFormat() object on demand is inexpensive. The underlying Tokenizer is a singleton anyway.
182 lines
6.5 KiB
Python
182 lines
6.5 KiB
Python
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
|
# All rights reserved.
|
|
#
|
|
# This source code is licensed under the terms described in the LICENSE file in
|
|
# the root directory of this source tree.
|
|
|
|
import json
|
|
from typing import AsyncGenerator, AsyncIterator, Dict, List, Optional, Union
|
|
|
|
from botocore.client import BaseClient
|
|
|
|
from llama_stack.apis.common.content_types import InterleavedContent
|
|
from llama_stack.apis.inference import (
|
|
ChatCompletionRequest,
|
|
ChatCompletionResponse,
|
|
ChatCompletionResponseStreamChunk,
|
|
EmbeddingsResponse,
|
|
Inference,
|
|
LogProbConfig,
|
|
Message,
|
|
ResponseFormat,
|
|
SamplingParams,
|
|
ToolChoice,
|
|
ToolConfig,
|
|
ToolDefinition,
|
|
ToolPromptFormat,
|
|
)
|
|
from llama_stack.providers.remote.inference.bedrock.config import BedrockConfig
|
|
from llama_stack.providers.utils.bedrock.client import create_bedrock_client
|
|
from llama_stack.providers.utils.inference.model_registry import (
|
|
ModelRegistryHelper,
|
|
)
|
|
from llama_stack.providers.utils.inference.openai_compat import (
|
|
OpenAICompatCompletionChoice,
|
|
OpenAICompatCompletionResponse,
|
|
get_sampling_strategy_options,
|
|
process_chat_completion_response,
|
|
process_chat_completion_stream_response,
|
|
)
|
|
from llama_stack.providers.utils.inference.prompt_adapter import (
|
|
chat_completion_request_to_prompt,
|
|
content_has_media,
|
|
interleaved_content_as_str,
|
|
)
|
|
|
|
from .models import MODEL_ALIASES
|
|
|
|
|
|
class BedrockInferenceAdapter(ModelRegistryHelper, Inference):
|
|
def __init__(self, config: BedrockConfig) -> None:
|
|
ModelRegistryHelper.__init__(self, MODEL_ALIASES)
|
|
self._config = config
|
|
|
|
self._client = create_bedrock_client(config)
|
|
|
|
@property
|
|
def client(self) -> BaseClient:
|
|
return self._client
|
|
|
|
async def initialize(self) -> None:
|
|
pass
|
|
|
|
async def shutdown(self) -> None:
|
|
self.client.close()
|
|
|
|
async def completion(
|
|
self,
|
|
model_id: str,
|
|
content: InterleavedContent,
|
|
sampling_params: Optional[SamplingParams] = SamplingParams(),
|
|
response_format: Optional[ResponseFormat] = None,
|
|
stream: Optional[bool] = False,
|
|
logprobs: Optional[LogProbConfig] = None,
|
|
) -> AsyncGenerator:
|
|
raise NotImplementedError()
|
|
|
|
async def chat_completion(
|
|
self,
|
|
model_id: str,
|
|
messages: List[Message],
|
|
sampling_params: Optional[SamplingParams] = SamplingParams(),
|
|
response_format: Optional[ResponseFormat] = None,
|
|
tools: Optional[List[ToolDefinition]] = None,
|
|
tool_choice: Optional[ToolChoice] = ToolChoice.auto,
|
|
tool_prompt_format: Optional[ToolPromptFormat] = None,
|
|
stream: Optional[bool] = False,
|
|
logprobs: Optional[LogProbConfig] = None,
|
|
tool_config: Optional[ToolConfig] = None,
|
|
) -> Union[ChatCompletionResponse, AsyncIterator[ChatCompletionResponseStreamChunk]]:
|
|
model = await self.model_store.get_model(model_id)
|
|
request = ChatCompletionRequest(
|
|
model=model.provider_resource_id,
|
|
messages=messages,
|
|
sampling_params=sampling_params,
|
|
tools=tools or [],
|
|
response_format=response_format,
|
|
stream=stream,
|
|
logprobs=logprobs,
|
|
tool_config=tool_config,
|
|
)
|
|
|
|
if stream:
|
|
return self._stream_chat_completion(request)
|
|
else:
|
|
return await self._nonstream_chat_completion(request)
|
|
|
|
async def _nonstream_chat_completion(self, request: ChatCompletionRequest) -> ChatCompletionResponse:
|
|
params = await self._get_params_for_chat_completion(request)
|
|
res = self.client.invoke_model(**params)
|
|
chunk = next(res["body"])
|
|
result = json.loads(chunk.decode("utf-8"))
|
|
|
|
choice = OpenAICompatCompletionChoice(
|
|
finish_reason=result["stop_reason"],
|
|
text=result["generation"],
|
|
)
|
|
|
|
response = OpenAICompatCompletionResponse(choices=[choice])
|
|
return process_chat_completion_response(response, request)
|
|
|
|
async def _stream_chat_completion(self, request: ChatCompletionRequest) -> AsyncGenerator:
|
|
params = await self._get_params_for_chat_completion(request)
|
|
res = self.client.invoke_model_with_response_stream(**params)
|
|
event_stream = res["body"]
|
|
|
|
async def _generate_and_convert_to_openai_compat():
|
|
for chunk in event_stream:
|
|
chunk = chunk["chunk"]["bytes"]
|
|
result = json.loads(chunk.decode("utf-8"))
|
|
choice = OpenAICompatCompletionChoice(
|
|
finish_reason=result["stop_reason"],
|
|
text=result["generation"],
|
|
)
|
|
yield OpenAICompatCompletionResponse(choices=[choice])
|
|
|
|
stream = _generate_and_convert_to_openai_compat()
|
|
async for chunk in process_chat_completion_stream_response(stream, request):
|
|
yield chunk
|
|
|
|
async def _get_params_for_chat_completion(self, request: ChatCompletionRequest) -> Dict:
|
|
bedrock_model = request.model
|
|
|
|
sampling_params = request.sampling_params
|
|
options = get_sampling_strategy_options(sampling_params)
|
|
|
|
if sampling_params.max_tokens:
|
|
options["max_gen_len"] = sampling_params.max_tokens
|
|
if sampling_params.repetition_penalty > 0:
|
|
options["repetition_penalty"] = sampling_params.repetition_penalty
|
|
|
|
prompt = await chat_completion_request_to_prompt(request, self.get_llama_model(request.model))
|
|
return {
|
|
"modelId": bedrock_model,
|
|
"body": json.dumps(
|
|
{
|
|
"prompt": prompt,
|
|
**options,
|
|
}
|
|
),
|
|
}
|
|
|
|
async def embeddings(
|
|
self,
|
|
model_id: str,
|
|
contents: List[InterleavedContent],
|
|
) -> EmbeddingsResponse:
|
|
model = await self.model_store.get_model(model_id)
|
|
embeddings = []
|
|
for content in contents:
|
|
assert not content_has_media(content), "Bedrock does not support media for embeddings"
|
|
input_text = interleaved_content_as_str(content)
|
|
input_body = {"inputText": input_text}
|
|
body = json.dumps(input_body)
|
|
response = self.client.invoke_model(
|
|
body=body,
|
|
modelId=model.provider_resource_id,
|
|
accept="application/json",
|
|
contentType="application/json",
|
|
)
|
|
response_body = json.loads(response.get("body").read())
|
|
embeddings.append(response_body.get("embedding"))
|
|
return EmbeddingsResponse(embeddings=embeddings)
|