llama-stack/llama_stack/cli/model/prompt_format.py
2024-09-25 10:56:13 -07:00

116 lines
4 KiB
Python

# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
import argparse
import subprocess
import textwrap
from io import StringIO
from llama_models.datatypes import CoreModelId, is_multimodal, model_family, ModelFamily
from llama_stack.cli.subcommand import Subcommand
class ModelPromptFormat(Subcommand):
"""Llama model cli for describe a model prompt format (message formats)"""
def __init__(self, subparsers: argparse._SubParsersAction):
super().__init__()
self.parser = subparsers.add_parser(
"prompt-format",
prog="llama model prompt-format",
description="Show llama model message formats",
epilog=textwrap.dedent(
"""
Example:
llama model prompt-format <options>
"""
),
formatter_class=argparse.RawTextHelpFormatter,
)
self._add_arguments()
self.parser.set_defaults(func=self._run_model_template_cmd)
def _add_arguments(self):
self.parser.add_argument(
"-m",
"--model-name",
type=str,
default="llama3_1",
help="Model Family (llama3_1, llama3_X, etc.)",
)
def _run_model_template_cmd(self, args: argparse.Namespace) -> None:
import pkg_resources
# Only Llama 3.1 and 3.2 are supported
supported_model_ids = [
m
for m in CoreModelId
if model_family(m) in {ModelFamily.llama3_1, ModelFamily.llama3_2}
]
model_str = "\n".join([m.value for m in supported_model_ids])
try:
model_id = CoreModelId(args.model_name)
except ValueError:
self.parser.error(
f"{args.model_name} is not a valid Model. Choose one from --\n{model_str}"
)
if model_id not in supported_model_ids:
self.parser.error(
f"{model_id} is not a valid Model. Choose one from --\n {model_str}"
)
llama_3_1_file = pkg_resources.resource_filename(
"llama_models", "llama3_1/prompt_format.md"
)
llama_3_2_text_file = pkg_resources.resource_filename(
"llama_models", "llama3_2/text_prompt_format.md"
)
llama_3_2_vision_file = pkg_resources.resource_filename(
"llama_models", "llama3_2/vision_prompt_format.md"
)
if model_family(model_id) == ModelFamily.llama3_1:
with open(llama_3_1_file, "r") as f:
content = f.read()
elif model_family(model_id) == ModelFamily.llama3_2:
if is_multimodal(model_id):
with open(llama_3_2_vision_file, "r") as f:
content = f.read()
else:
with open(llama_3_2_text_file, "r") as f:
content = f.read()
render_markdown_to_pager(content)
def render_markdown_to_pager(markdown_content: str):
from rich.console import Console
from rich.markdown import Markdown
from rich.style import Style
from rich.text import Text
class LeftAlignedHeaderMarkdown(Markdown):
def parse_header(self, token):
level = token.type.count("h")
content = Text(token.content)
header_style = Style(color="bright_blue", bold=True)
header = Text(f"{'#' * level} ", style=header_style) + content
self.add_text(header)
# Render the Markdown
md = LeftAlignedHeaderMarkdown(markdown_content)
# Capture the rendered output
output = StringIO()
console = Console(file=output, force_terminal=True, width=100) # Set a fixed width
console.print(md)
rendered_content = output.getvalue()
# Pipe to pager
pager = subprocess.Popen(["less", "-R"], stdin=subprocess.PIPE)
pager.communicate(input=rendered_content.encode())