forked from phoenix-oss/llama-stack-mirror
This is unfortunate because `sqlite-vec` seems promising. But its PIP package is not quite complete. It does not have binary for arm64 (I think, or maybe it even lacks 64 bit builds?) which results in the arm64 container resulting in ``` File "/usr/local/lib/python3.10/site-packages/sqlite_vec/init.py", line 17, in load conn.load_extension(loadable_path()) sqlite3.OperationalError: /usr/local/lib/python3.10/site-packages/sqlite_vec/vec0.so: wrong ELF class: ELFCLASS32 ``` To get around I tried to install from source via `uv pip install sqlite-vec --no-binary=sqlite-vec` however it even lacks a source distribution which makes that impossible. ## Test Plan Build the container locally using: ```bash LLAMA_STACK_DIR=. llama stack build --template ollama --image-type container ``` Run the container as: ``` podman run --privileged -it -p $LLAMA_STACK_PORT:$LLAMA_STACK_PORT \ -v ~/.llama:/root/.llama \ --env INFERENCE_MODEL=$INFERENCE_MODEL \ --env OLLAMA_URL=http://host.containers.internal:11434 \ -v ~/local/llama-stack:/app/llama-stack-source localhost/distribution-ollama:dev --port $LLAMA_STACK_PORT ``` Verify the container starts up correctly. Without this patch, it would encounter the ELFCLASS32 error.
133 lines
5.5 KiB
Python
133 lines
5.5 KiB
Python
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
|
# All rights reserved.
|
|
#
|
|
# This source code is licensed under the terms described in the LICENSE file in
|
|
# the root directory of this source tree.
|
|
|
|
from typing import List
|
|
|
|
from llama_stack.providers.datatypes import (
|
|
AdapterSpec,
|
|
Api,
|
|
InlineProviderSpec,
|
|
ProviderSpec,
|
|
remote_provider_spec,
|
|
)
|
|
|
|
|
|
def available_providers() -> List[ProviderSpec]:
|
|
return [
|
|
InlineProviderSpec(
|
|
api=Api.vector_io,
|
|
provider_type="inline::meta-reference",
|
|
pip_packages=["faiss-cpu"],
|
|
module="llama_stack.providers.inline.vector_io.faiss",
|
|
config_class="llama_stack.providers.inline.vector_io.faiss.FaissVectorIOConfig",
|
|
deprecation_warning="Please use the `inline::faiss` provider instead.",
|
|
api_dependencies=[Api.inference],
|
|
),
|
|
InlineProviderSpec(
|
|
api=Api.vector_io,
|
|
provider_type="inline::faiss",
|
|
pip_packages=["faiss-cpu"],
|
|
module="llama_stack.providers.inline.vector_io.faiss",
|
|
config_class="llama_stack.providers.inline.vector_io.faiss.FaissVectorIOConfig",
|
|
api_dependencies=[Api.inference],
|
|
),
|
|
# NOTE: sqlite-vec cannot be bundled into the container image because it does not have a
|
|
# source distribution and the wheels are not available for all platforms.
|
|
InlineProviderSpec(
|
|
api=Api.vector_io,
|
|
provider_type="inline::sqlite-vec",
|
|
pip_packages=["sqlite-vec"],
|
|
module="llama_stack.providers.inline.vector_io.sqlite_vec",
|
|
config_class="llama_stack.providers.inline.vector_io.sqlite_vec.SQLiteVectorIOConfig",
|
|
api_dependencies=[Api.inference],
|
|
),
|
|
InlineProviderSpec(
|
|
api=Api.vector_io,
|
|
provider_type="inline::sqlite_vec",
|
|
pip_packages=["sqlite-vec"],
|
|
module="llama_stack.providers.inline.vector_io.sqlite_vec",
|
|
config_class="llama_stack.providers.inline.vector_io.sqlite_vec.SQLiteVectorIOConfig",
|
|
deprecation_warning="Please use the `inline::sqlite-vec` provider (notice the hyphen instead of underscore) instead.",
|
|
api_dependencies=[Api.inference],
|
|
),
|
|
remote_provider_spec(
|
|
Api.vector_io,
|
|
AdapterSpec(
|
|
adapter_type="chromadb",
|
|
pip_packages=["chromadb-client"],
|
|
module="llama_stack.providers.remote.vector_io.chroma",
|
|
config_class="llama_stack.providers.remote.vector_io.chroma.ChromaVectorIOConfig",
|
|
),
|
|
api_dependencies=[Api.inference],
|
|
),
|
|
InlineProviderSpec(
|
|
api=Api.vector_io,
|
|
provider_type="inline::chromadb",
|
|
pip_packages=["chromadb"],
|
|
module="llama_stack.providers.inline.vector_io.chroma",
|
|
config_class="llama_stack.providers.inline.vector_io.chroma.ChromaVectorIOConfig",
|
|
api_dependencies=[Api.inference],
|
|
),
|
|
remote_provider_spec(
|
|
Api.vector_io,
|
|
AdapterSpec(
|
|
adapter_type="pgvector",
|
|
pip_packages=["psycopg2-binary"],
|
|
module="llama_stack.providers.remote.vector_io.pgvector",
|
|
config_class="llama_stack.providers.remote.vector_io.pgvector.PGVectorVectorIOConfig",
|
|
),
|
|
api_dependencies=[Api.inference],
|
|
),
|
|
remote_provider_spec(
|
|
Api.vector_io,
|
|
AdapterSpec(
|
|
adapter_type="weaviate",
|
|
pip_packages=["weaviate-client"],
|
|
module="llama_stack.providers.remote.vector_io.weaviate",
|
|
config_class="llama_stack.providers.remote.vector_io.weaviate.WeaviateVectorIOConfig",
|
|
provider_data_validator="llama_stack.providers.remote.vector_io.weaviate.WeaviateRequestProviderData",
|
|
),
|
|
api_dependencies=[Api.inference],
|
|
),
|
|
remote_provider_spec(
|
|
api=Api.vector_io,
|
|
adapter=AdapterSpec(
|
|
adapter_type="sample",
|
|
pip_packages=[],
|
|
module="llama_stack.providers.remote.vector_io.sample",
|
|
config_class="llama_stack.providers.remote.vector_io.sample.SampleVectorIOConfig",
|
|
),
|
|
api_dependencies=[],
|
|
),
|
|
remote_provider_spec(
|
|
Api.vector_io,
|
|
AdapterSpec(
|
|
adapter_type="qdrant",
|
|
pip_packages=["qdrant-client"],
|
|
module="llama_stack.providers.remote.vector_io.qdrant",
|
|
config_class="llama_stack.providers.remote.vector_io.qdrant.QdrantVectorIOConfig",
|
|
),
|
|
api_dependencies=[Api.inference],
|
|
),
|
|
remote_provider_spec(
|
|
Api.vector_io,
|
|
AdapterSpec(
|
|
adapter_type="milvus",
|
|
pip_packages=["pymilvus"],
|
|
module="llama_stack.providers.remote.vector_io.milvus",
|
|
config_class="llama_stack.providers.remote.vector_io.milvus.MilvusVectorIOConfig",
|
|
),
|
|
api_dependencies=[Api.inference],
|
|
),
|
|
InlineProviderSpec(
|
|
api=Api.vector_io,
|
|
provider_type="inline::milvus",
|
|
pip_packages=["pymilvus"],
|
|
module="llama_stack.providers.inline.vector_io.milvus",
|
|
config_class="llama_stack.providers.inline.vector_io.milvus.MilvusVectorIOConfig",
|
|
api_dependencies=[Api.inference],
|
|
),
|
|
]
|